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This paper (Multidimensional KTAB) is 
a technical discussion paper designed 
as a follow on to An Introduction to the 

KAPSARC Toolkit for Behavioral Analysis using 
one-dimensional spatial models (Unidimensional 
KTAB). It extends the original framework of KTAB 
to explain the analysis described in the recently 
released KAPSARC discussion paper Reforming 
the Role of State-Owned Enterprise in China’s 
Energy Sector: An Analysis of Collective Decision-
Making Processes Using the KAPSARC Toolkit for 
Behavioral Analysis (Chinese SOE Reform).

In the first paper, we introduced the basic concepts 
of the KAPSARC Toolkit for Behavioral Analysis 
(KTAB), what we mean by Collective Decision-
Making Processes (CDMPs) and the basic terms 
surrounding simple models implemented in KTAB, 
such as the Spatial Model of Politics (SMP), 
including actors, position, influence and salience.

In Unidimensional KTAB, our aim was to introduce 
these basic concepts by focusing on what we 
called simple dynamic CDMPs. This type of CDMP 
describes a situation in which actors could generate 
a series of proposals and counterproposals in an 
attempt to win enough support from the rest of the 
group until no actor can improve their position, 
which determines a final winning proposal. 

The actors can change their positions, but not their 
utility functions. The first paper also introduced 
the concept of complex dynamic CDMPs 
(Unidimensional KTAB: section 4.2, page 19). These 
were considered to be an extension to the simple 
dynamic case, in which actors can induce other 
actors to change both their position and utilities. 
These complex dynamic CDMPs are the topic of 
this subsequent paper. In addition, we expand our 
explanation from one-dimensional problems to 
multidimensional questions.

How to use this Document

This paper aims to provide applied users with an 
understanding of the logic and theory underpinning 
the models and, more specifically, the underlying 
mechanics behind the case study presented in SOE 
Reform. It also explains to power users how to build 
and construct models of multidimensional CDMPs 
using the SMP in KTAB.

For applied users who wish to run their own 
examples through KTAB using the same model, the 
software libraries are available on the KTAB website 
at http://ktab.kapsarc.org. Users can run their own 
models with smpc. It can read a user-specified 
CSV data file for a scenario; for testing purposes 
it can also generate random test scenarios. More 
information on how to run the smpc is available 
in the online documentation. Source code 
documentation and other supporting materials are 
available through the KTAB website.
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1. Expanding the Spatial Model of Politics

This section reiterates the main concepts related to the SMP, but expands and 
updates them for multidimensional models.

Multidimensional models are those in which the policy issue at the heart of the 
CDMP has multiple parts and cannot be succinctly described in a single question. 
Positions are no longer points on a line, but points in multidimensional space. In 
consequence, many of the terms need to be defined more precisely, given the 
more complex framework.

2. Introducing a Generalized Approach for Modeling CDMPs

This section moves beyond the Median Voter Theorem and Central Position 
Theorem presented in Unidimensional KTAB. Both were deterministic, but in 
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The Probabilistic Condorcet Election (PCE) is presented as a more nuanced view 
of winning, in which the probability of one option’s being adopted over another 
depends upon the level of support each option receives from its supporting 
coalition of actors. The composition of coalitions stems from how actors view the 
relative utility of the various options.

3. The Fundamental Steps of Bilateral Negotiation

This section provides an outline of the logic behind KTAB style models of complex 
dynamic CDMPs. We then formalize the description with a four-step process 
describing actor behaviors and interactions: assessment, targeting, proposal and 
resolution.

In the assessment phase, actors estimate the utility of the various options before, 
in the targeting phase, evaluating other actors to find suitable candidates to 
influence and form coalitions with. These bargains are carried out between actors 
in the proposal stage, before a winner emerges in the resolution stage.

4. The Mathematics of Bilateral Negotiation

This section is intended to be read by power users and describes in detail the 
mathematical underpinning of a multidimensional SMP involving a complex 
dynamic CDMP.

The interaction between actors is driven by their risk tolerances and their 
competing views, not only of the utility of alternative options, but also of their 
estimate of how other actors judge the utility of the alternative options. In addition 
to setting out the main formula, we also discuss the alternative parameterization 
possible through KTAB.
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1.2 Moving from the One 
dimensional SMP to a 
Multidimensional SMP
In Unidimensional KTAB we introduce various 
concepts, including the Practical Spectrum of 
Plausible Positions (PSPP). This was a one-
dimensional line that enabled us to convert 
qualitative descriptions of policies into a numeric 
position. Figure 1.1 recreates the example spectrum 
of positions used in Unidimensional KTAB (section 
3.3, page 14).

On this one-dimensional spectrum, actors 
advocating a complete free market would be given a 
position of 0; actors calling for complete government 
control, 100. An actor calling for liberalized markets 
in consumer goods, but with government control 
over education and healthcare, might be given a 
position of 25 or 30.

Not all questions and CDMPs can be so neatly 
reduced to a single dimension. A broader policy 
discussion over state control could be imagined. 
State control of markets could be just one aspect; 
another might be state control over the press and 
freedom of speech. It is possible that a single 
actor could advocate liberalized markets but high 
levels of censorship, or vice versa. The point is that 
actors can view different dimensions of the overall 
policy differently. This is the basis of the expansion 
towards the multidimensional SMP.

In Unidimensional KTAB, we introduced:

a one-dimensional CDMP model known as the 
Spatial Model of Politics (SMP), and

some basic terminology necessary to describe 
the CDMP model and collect the necessary 
data.

In this section, we both reiterate the main 
points from that paper and add an extra layer of 
sophistication necessary to handle the subtleties of 
a multidimensional CDMP. We begin by restating 
what an actor is and explaining the expansion of the 
SMP from one dimension to many.

1.	1 Actors
Actors are all the stakeholders that contribute to the 
CDMP in some way. Actors are generally groups of 
individuals or entities with common interests. When 
actors are labelled with the names of individual 
leaders, they are taken as representative of the 
faction which that individual leads. Aggregates 
can be formal (such as a corporation) or informal 
(such as ‘subsistence farmers’ or ‘aerospace 
manufacturers’).

We will generally use the symbol N to denote the 
number of actors and refer to each individual actor 
by an index such as i, j, or k. The more exhaustive 
the list, the better the position and the power 
landscape will be mapped, but there is of course 
a trade-off between an exhaustive list and the 
available knowledge.

1.	 Expanding the Spatial Model of 
Politics
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A two-dimensional SMP might therefore be 
visualized as in Figure 1.2, with the different policy 
dimensions set out on different axes, where each 
axis is a well-defined PSPP.

Of course, this might be extended to three 
dimensions through the addition of a third explicit 
policy option along a third axis, labeled as a 
PSPP (Figure 1.3), and from there to the generic 
multidimensional case with k dimensions.

As the dimensional space of the SMP becomes 
more complex, it is necessary to define an actor’s 
position with increased clarity and specificity.

In Unidimensional KTAB, we dealt with only a single 
dimension (the PSPP), and each actor’s position 
was a single number between 0 and 1. However, a 
multidimensional policy debate is one in which there 
are multiple, separable aspects of the problem, so it 

takes multiple co-ordinates to describe the position 
of an actor.

Positions are points in multiple dimensions. 
Each aspect of the problem is assigned its own 
dimension, and the actor’s preferred outcome for 
that aspect is its co-ordinate along that dimension. 
For convenience, each co-ordinate is normalized 
to the scale. In a policy debate with three issues, 
an actor’s position would be described by a triple of 
three co-ordinates, e.g. (0.23, 0.98, 0.67).

A two-dimensional example is given in Figure 
1.4. There are five actors, A through E, whose 
positions are represented as points inside a two-
dimensional square. Each actor’s position is given 
by two co-ordinates, one for the X-axis and one for 
the Y-axis. Note that actors can be close on one 
dimension while being far apart on another, as with 
actors A and B. It is important to notice that the 

Figure 1.1 ‒ A simple one-dimensional spectrum of positions, using economic policy as an example (recreated from Figure 3.1 
in Unidimensional KTAB: section 3.3, page 14). The spectrum displays attitudes with regard to a single question of issue with 
movement in either direction signifying incrementally more extreme views. Source: KAPSARC

1.2 Moving from the One dimensional SMP to a Multidimensional SMP
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pro-free market

1000



7Multidimensional Bargaining Using KTAB

Figure 1.2 ‒ Extending the Policy Issue to Two Dimensions. The initial PSPP describing economic policy remains as before.  
A second dimension has now been added as a Y-axis looking at press censorship and freedom of speech. Again, more extreme 
positions are found towards the ends of the axes. Actor positions are no longer points on a line, but points in two-dimensional 
space. Source: KAPSARC

Figure 1.3 ‒ Extending the Policy Issue to Three Dimensions. A third axis has been added to describe a third element. Positions 
towards the overall policy are now described as points in three dimensional space depending on attitudes to the three separated 
policy dimensions. Source: KAPSARC
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Complete State Control  
of the Economy

Expanding the Spatial Model of Politics
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In short, we may find that what was originally 
thought to be a two-dimensional problem can be 
more succinctly modeled as a one-dimensional 
CDMP.

We will generally use K to denote the number 
of dimensions in a policy debate. The set of all 
possible positions is Ω = [0,1]K. A particular position 
will be referenced as another Greek letter like θ, α, 
or β. The position of the i-th actor would be θi and 
the k-th co-ordinate would be θik. Thus, the complete 
position is represented as an ordered list of all the 
co-ordinates along all the PSPPs: 

(1)

1.3 The Main Terms in the SMP
As we move from the one-dimensional SMP to our 
current multidimensional case, it is necessary also 
to redefine the main terms.

Influence measures how easily the actor can shape 
the outcome of the CDMP if fully motivated. This 
is not a measure of how likely the actor’s preferred 
position is to win, nor is it a measure of the actor’s 
motivation to win. It is the maximum capability to 
exert influence, clout, or political power which an 
actor could apply to the policy debate. It could be 
a consequence of its political connections, official 
or unofficial position, ties to critical stakeholders, 
economic wealth or other factors.

In Unidimensional KTAB (section 5.4, page 27) we 
denoted influence with the letter j. As we develop 
the sophistication with which an actor’s influence 
can be modulated, we will generally use ci to 
denote the i-th actor’s maximum capability to exert 
influence; it is always positive. The basic purpose 
of the capability measure is to assess whether one 

actor’s position is a point in two-dimensional space; 
where an actor falls along a single dimension is 
simply a co-ordinate. The position is the list of all the 
co-ordinates along all the PSPPs.

Sometimes, a policy debate may be conducted in 
terms of many specific issues, but the positions 
on specific issues are highly correlated with each 
other‒because they are all just aspects of one 
underlying conceptual issue. For example, a great 
many domestic economic debates are about 
different aspects of income redistribution. While 
there are many nuances to the debate, knowing that 
an actor favors extreme and thorough redistribution 
of wealth from rich to poor is sufficient information 
to infer its position on many particular policies for 
income redistribution. Similarly, knowing that an 
actor is totally opposed to any income redistribution 
is sufficient information to infer its position on 
many particular policies for income redistribution. 
In statistical terms, this means that there is one 
‘principal component’ (pro- or anti-redistribution) that 
explains most of the variation in the data. Principal 
component analysis is often used in public opinion 
survey data to try to summarize the underlying 
issues driving policy debates; for our purposes it is 
a useful concept to reduce the dimensionality of the 
problem.

This is illustrated in Figure 1.5. Although the blue 
data points were originally obtained in terms of X 
and Y dimensions, it be might better to analyze the 
data in terms of the green principal component. This 
is frequently the case when two or more sub-issues 
are not really separable, because they (X and Y) 
are different components of a plan to implement 
a policy, or different aspects of the consequences 
expected from a policy. In this case, the analysis 
would be best conducted by abstracting away the 
details and focusing on the underlying issue.

𝜃𝜃! = 𝜃𝜃!!, 𝜃𝜃!!, 𝜃𝜃!!, … , 𝜃𝜃!" 	
  

1.2 Moving from the One dimensional SMP to a Multidimensional SMP
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Expanding the Spatial Model of Politics

A

B

D

E

C

Figure 1.4 ‒ Positions in Two Dimensions. Each actor has an attitude towards each dimension of the policy question (axis 
co-ordinates), but its overall position towards the whole policy question is denoted by a point in multidimensional space.  
Source: KAPSARC

Figure 1.5 ‒ Correlated Co-ordinates. Highly correlated dimensions may reveal an underlying principal component, in which case it 
is better to reduce the number of dimensions to focus on the principal component (in this case from two to one).  
Source: KAPSARC

Y

X
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coalition of actors is stronger than another coalition 
in the policy debate. As only the ratios of capability 
matter in comparing coalition strength, it is often 
convenient to normalize the values so that the 
strongest actor has maximum influence, 100.

In Unidimensional KTAB we introduced the term 
Attractiveness to describe how actors view the 
desirability of the expected consequences of various 
positions. In the one-dimensional case that we 
described, there was no distinction made between 
the position taken and its expected consequences. 
This means that there is no difference between 
the way the actor views the position and the way 
the actor views the expected consequences of that 
position. They are one and the same thing.

In the multidimensional case, this agreement on how 
positions translate into consequences is lost. Each 
actor could have a somewhat different mental model 
of the world. This means that positions can no 
longer be thought of as synonymous with expected 
consequences.

Utility is the desirability of a position to an actor, 
typically normalized to a [0,1] scale.

Therefore, to repeat:

Attractiveness is a numeric function of the 
expected consequences of an outcome;

Each actor has a world view or model (WM) 
which enables them to convert a position into 
expected consequences according to their own 
perspective; and

Utility is a numeric function of the position. The 
utility of the policy (position) is the attractiveness 
of the expected consequences of that policy.

The utility applies to the position as a whole, 
taking into account all the co-ordinates along each 

dimension. While the utility measure always takes 
into account the interactions between dimensions, 
it is often useful to analyze how changing just one 
dimension of a particular multidimensional position 
would change an actor’s utility.

As Figure 1.6 shows, utility need not change 
equally in each direction: it is a function of a 
multidimensional position. Nonetheless, we can 
examine the utility of each dimension separately by 
sliding the position A (with utility UA) along a single 
dimension, to give a new position of either A’ (with 
utility UA') or A” (with utility UA").

Finally, salience is how much importance an actor 
attaches to each dimension of a policy. In one 
dimension, an actor’s salience was taken to be the 
overall importance to that actor of the entire issue, 
as there was only a single issue. In simple terms, 
it described the likelihood of the actor to focus on 
the issue rather than being distracted by competing 
concerns outside the modeled CDMP (see Figure 
1.7). Salience has previously been described in a 
scale [0,100]; as with utility it can also be normalized 
to [0,1].

In multiple dimensions, it will often happen that 
different actors will place differing emphases 
on different aspects of the problem. Different 
dimensions will therefore have different salience 
scores describing their relative importance to the 
actor; see Figure 1.8.

Consequently, the i-th actor has an entire vector 
of salience values, where sik is the salience to the 
i-th actor of the k-th policy dimension. The overall 
salience for actor i is the sum si over all dimensions 
of the salience to that actor of that dimension:

               (2)𝑠𝑠! = 𝑠𝑠!"

!

!!!

	
  

	
  

1.3 The Main Terms in the SMP
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Figure 1.6 ‒ Analyzing the utility of a point in two-dimensional space. The utility of a position is a function of the precise trade-
offs described by the point in multidimensional space. Moving a point along a single dimension (e.g. UA to UA’ ) can reveal the 
importance of that dimension, but it will not fully explain the relative and interacting importance of the two dimensions in explaining 
the utility of a different point in space (UA vs UB ) Source: KAPSARC

Y

X

A

B

UA=13 UA”=12

UA’=11

UB=7

Figure 1.7 ‒ In one dimension, salience describes how important the modeled dimension is compared with unmodeled issues.
Source: KAPSARC

Expanding the Spatial Model of Politics

Unmodeled Issues

No State Control 
(Completely Free Market)

Complete State Control  
of the Economy



12Multidimensional Bargaining Using KTAB

This equation does not alter the meaning of overall 
salience; it simply describes its components. 
Total salience will sum to less than or equal to 1; 
the difference from 1 reveals the importance of 
unmodeled aspects.

Another way of thinking about salience along one 
dimension is to view it in terms of the stakes for 
changing only that dimension. The higher the stakes 
of a dimension to an actor, the higher the salience 
of that dimension. The situation can be illustrated in 
Figure 1.9.

The blue dot marks the position of an actor. As this 
is its own favored position, this has utility 1.0 to it 
(the actor). Positions further away have lesser utility; 
the green contour lines show how the utility declines 
with distance. Because the contour lines are not 

circles but ellipses, changes in the X co-ordinate 
have more impact on its utility than do similar 
changes in the Y co-ordinate. In other words, it will 
perceive higher stakes from changes in X than from 
similar changes in Y. In other words, X has higher 
salience than does Y for this actor.

It is important to understand that the influence 
actually exerted by actors in a choice between two 
alternatives depends directly on the stakes, and only 
indirectly on the distance. Referring back to Figure 
1.9, the light blue dot at the top has utility 0.7 to the 
actor while the yellow dot to the right has utility 0.4 
– even though both are the same distance from the 
preferred point (the blue dot). Because X is more 
salient to this actor than is Y, the same distance in 
the X direction is of more consequence than the 
same distance in the Y direction. The stakes in a 

Figure 1.8 ‒ In multiple dimensions, overall salience describes how important the modeled dimensions are compared with 
unmodeled issues. Each dimension has its own individual salience. Source: KAPSARC

Complete State  
Censorship of Speech

No State Control 
(Completely Free Speech)

No State Control 
(Completely Free Market)

Complete State Control  
of the Economy

Unmodeled 
Issues

1.3 The Main Terms in the SMP
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Y

X

0.4
0.7

0.9

Figure 1.9 ‒ Utility Contours. The light blue and yellow dots are equidistant from the blue dot but the different salience scores 
assigned to each axis means that the move from blue to yellow represents a larger loss of utility than the move from blue to light 
blue. Source: KAPSARC

Expanding the Spatial Model of Politics

choice between blue and light blue would be 0.3 = 1 
‒ 0.7, while the stakes in a choice between blue and 
yellow would be 0.6 = 1 ‒ 0.4. The actor would be 
much more motivated to act in the second case and 
could be expected to exert roughly twice the effort.

Notice that the green contours are evenly spaced 
along the Y-axis, but the utility continues to decline. 
The decline from the blue dot to the first ellipse is 
just 0.1; the decline from the first to second ellipse is 
0.2; the decline from the second to the third ellipse 
is 0.3. The shape is actually an inverted parabola 
(upside down letter U), centered on the blue dot and 
stretched in the Y direction.

The stake in a choice between two positions is the 
difference between what an actor sees as the utility 
between those positions. The stake is only defined 
in terms of the comparison between two different 
options. Suppose an actor is faced with four options, 

where A and B are both very desirable, while C and 
D are both very undesirable. It would have very little 
at stake in an A:B choice, because both are very 
good options, so it would probably not be greatly 
concerned whichever occurred. However, it would 
have a great deal at stake in A:C or B:C, because 
C is much worse than either A or B. Finally, it would 
have little at stake in C:D, because both options are 
equally bad.

In Figure 1.10 we show this graphically: d1 and d2 

have similar levels of utility for the actor, regardless 
of their apparent distance on the PSPP. The stakes 
are therefore low and the actor will likely not care 
which of d1 and d2  is the outcome. In contrast, d2  
and d3 , although seemingly close on the PSPP, have 
very different levels of utility. In the choice between 
d2  and d3, the actor is likely to fight hard to avoid d3 
as the stakes are now much higher. This reinforces 
the distinction between utility and proximity.
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What an actor has at stake strongly affects how 
much influence it will exert to shape the outcome 
of a policy. When a ‘life or death’ issue arises, 
with the highest possible stakes, great effort can 
be expected. When a trivial issue arises, with 
insignificant stakes, little effort can be expected. Of 
course, what is critically important to one actor may 
be unimportant to another – and vice versa.

Stakes and salience are very closely linked but 
are, importantly, conceptually distinct.

The stakes refer to the difference in utility 
between two positions in multidimensional space.

Unlike stakes, salience does not refer to how the 
actor will choose between pairwise alternatives 
but rather:

1.3 The Main Terms in the SMP

U
U1

U2

U3

d1 d2 d3 D

Figure 1.10 ‒ Changes in utility need not be linearly related to changes in distance or proximity. Stakes describe this difference 
in utility between two positions. The X-axis (D) denotes distance between positions (in one-dimensional terms, think of this as 
the distance between points on a PSPP). The Y-axis denotes the utility of these positions. Positions 1 and 2 have similar utility 
despite their distance: low stakes. Positions 2 and 3 have very different utilities despite their closeness: high stakes.  
Source: KAPSARC

•	 The overall salience, si, refers to the degree to 
which an actor cares about the overall policy 
discussion being modeled.

•	 Individual salience, sik, refers to the weight 
the actor places on a particular individual 
dimension of the multidimensional policy 
question.

1.4 How the Terms are Related
Influence, utility, stakes and salience are all tightly 
interconnected, with the latter three all modulating, 
in one way or another, the degree of influence 
an actor actually exerts at any particular moment 
during the CDMP. One way of formalizing these 
relationships is the following Domain Specific Utility 
Model (DSUM).
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1.9, except that the ellipses have been stretched 
until their sides appear as two parallel lines. The 
inner pair correspond to the positions with utility 0.9, 
the middle pair to positions with utility 0.7, and the 
outer pair to 0.4. Now, because Y has zero salience 
and utility does not change at all along that axis, the 
orange position has the same utility, 1.0, as does the 
actor’s position at the blue dot.

This gives an interpretation of the overall salience: it 
is the salience of the policy problem being modeled, 
compared with all the other (unmodeled) factors 
affecting that actor. Thus, the overall salience of the 
actor measures its propensity to attend to this policy 
issue, as was explained in Unidimensional KTAB 
(section 3.5, page 17). Conversely, 1‒si is a rough 
indicator of the actor’s propensity to acquiesce in 
proposed changes to its overall policy position, 
because it is attending to other factors. In other 
words, 1–si is the salience of all the external factors 
which are not directly represented.

In the one-dimensional case K =1, d(α, β) = │α ‒ β│ 
regardless of si. However, in the multidimensional 
case, actors will typically disagree as to the policy 
relevant difference, because they attach different 
salience to different aspects of a policy. In symbols, 
di (α, β) ≠ dj (α, β).

The second part of the DSUM is to treat the utility to 
an actor of a position as declining with the difference 
between the actor’s position and that position. Again 
policy relevant difference is not the same as simple 
distance and depends on the particular actor being 
considered. Each actor has a curvature parameter 
R, the meaning of which will be explained shortly.

In multiple dimensions, it is likely that actors will not 
agree on the order in which policies that are more 
or less similar to their own should fall, because each 
has their own idea of the policy relevant difference. 
This effect is illustrated in Figure 1.12. As before, 

Expanding the Spatial Model of Politics

The first part of the DSUM is to measure the policy 
relevant difference between two positions in terms 
of an actor’s salience. That is, two positions, α 
and β may have different co-ordinates on the k-th 
dimension, separated by a certain distance, αk – βk, 
but if that dimension is not important to the actor, 
then it sees no significant difference between the 
policies. Another actor, who places higher salience 
on that dimension, might see the same distance as 
being highly significant.

𝑑𝑑!! 𝛼𝛼, 𝛽𝛽 =
𝑠𝑠!" 𝛼𝛼! − 𝛽𝛽!

!!
!!!

𝑠𝑠!" !!
!!!

	
  

	
  

(3)

There are several important features of equation 
3. The denominator cannot be zero: the actor must 
regard some aspects of the policy as having at least 
some significance. If not, that actor probably should 
be removed from the model. Second, the difference 
is essentially an average, weighted by salience. 
Because all the positions are in the K-dimensional 
space [0,1]K, the separation between any two 
co-ordinates is between 0 and 1, so the overall 
policy relevant difference measure is between  
0 and 1.

Notice that if the actor does not care about 
distances along the k-th dimension, formally  
sik = 0, then the separation, αk – βk has no effect 
on the difference di. When we say that an actor 
“has no position” on the k-th dimension of a policy 
problem, we really mean that it has no position that 
it is willing to promote or defend, because it has no 
preferences along that dimension, i.e. that sik = 0. 
One consequence of sik = 0 is that when it is time to 
bargain over positions, actor i will make no attempt 
to preserve θik and will acquiesce to whatever any 
other actor proposes along that dimension, because 
it simply does not care.

This situation is shown in Figure 1.11, where the 
dimension has zero salience. It is similar to figure 
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Y

X

0.4 0.7 0.9 0.9 0.7 0.4

Figure 1.11 ‒ Zero Salience Contours. The actor has a salience score of zero for the Y-axis. As a result of zero salience the stakes 
between positions that differ only in their Y-axis co-ordinate are also zero. The actor is agnostic between the blue and light blue dot. 
Source: KAPSARC

Y

X

Figure 1.12 ‒ Different Orders. Different actors have different views of the world by virtue of their difference salience scores. Green 
would rank positions [A,C,B]; Yellow would rank them [A,B,C].  Source: KAPSARC

1.4 How the Terms are Related

C

BA
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the green ellipse is the utility contour for an actor 
whose own position is the point A and which has 
higher individual salience for the X dimension for Y. 
By contrast, the yellow ellipse is the utility contour of 
an actor the position of which is also at A but which 
has higher individual salience for the Y dimension 
than for X. The ellipse has the same shape except 
rotated: both actors have the same overall salience, 
except their individual saliences are swapped 
between X and Y.

If the green actor was asked to order the three blue 
dots by how similar they were to his position at A, 
then his order would be [A,C,B]: the green ellipse 
would have to shrink down to reach A and would 
have to stretch out to reach B. However, if the yellow 
actor was asked to order the dots by how similar 
they were to his position A, his order would be [A,B,C]. 

Thus it is perfectly possible in multiple dimensions 
that two actors could have the same position, the 
same overall salience and the same capability 
to exert influence, and still have dramatically 
different preferences between options because 
their individual saliences were different. This is 
not possible in one dimension, because overall 
salience and individual salience are the same in one 
dimension.

As suggested in Figure 1.12, the utility function 
of an actor is typically nonlinear; the degree of 
nonlinearity is given by the curvature parameter 
R. The utility function is a quadratic function of 
difference:

𝑢𝑢! 𝛼𝛼 = 1 − 𝑑𝑑! 𝛼𝛼, 𝜃𝜃! × 1 + 𝑅𝑅!𝑑𝑑! 𝛼𝛼, 𝜃𝜃! 	
  
	
  

   (4)

Without subscripts, this can be expressed more 
succinctly as u = (1 – d) (1 + Rd). This is the DSUM 
that gives elliptical utility contours in Figure 1.9.

Influence, utility, stakes 
and salience are all tightly 
interconnected, with the latter 
three all modulating, in one 
way or another, the degree of 
influence an actor actually exerts 
at any particular moment during 
the CDMP. 

Expanding the Spatial Model of Politics
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In all cases, though, the theory as presented in 
Unidimensional KTAB led to deterministic outcomes. 
The winner of any CDMP was declared the absolute 
winner regardless of the margin of his victory. In 
practice this is not always the case. We can imagine 
some scenarios where the vote is carried by a 
majority of one, but we can also imagine scenarios 
where having a marginal increase in voting weight 
over an opponent does not equate to certain 
victory. An example could be a lobbying campaign 
in which having more money can certainly improve 
the chances of winning, but need not seal victory. 
Poor use of the money could enable the weaker, 
more poorly funded, lobby group to prevail. In 
other words, we need to develop a more nuanced 
view of winning, moving away from a deterministic 
outcome to a probabilistic one. In this section we will 
explore the basic theory and algebra necessary to 
build a probabilistic CDMP model. We call this the 
Probabilistic Condorcet Election (PCE).

2.1 The Probabilistic 
Condorcet Election
Faced with a choice between two options, the 
amount of influence which the actor i will exert to 
promote the first option over the second is termed 
the ‘generalized vote’ of actor i.

It is written as:

vi (α: β)                                        (5)

Positive values mean influence to promote the 
first option (α); negative values mean influence to 
promote the second option (β). The effort exerted 
will depend on the actor’s capability to exert 
influence as well as the stakes they perceive.

As actors vote for one option over another, various 

2. Introducing a Generalized Approach 
for Modeling CDMPs

In Unidimensional KTAB we introduced some 
basic concepts to explain the modeling of 
CDMPs, but in fact we were discussing:

one-dimensional questions; and

deterministic answers.

Black’s (1948) celebrated Median Voter Theorem 
(MVT) says that the winning outcome of a CDMP is 
that which has 50% or more of the vote to its right 
and 50% or more of the vote to its left. Left and right 
here refer back to the horizontal one-dimensional 
PSPP upon which the analysis is based.

The MVT suffered from various limitations:

it allowed for only binary voting: a simple yes or 
no, with the actor’s full voting weight;

it only worked for one-dimensional questions; 
and

it assumed a single-peaked utility curve for each 
actor.

For a fuller discussion, see Unidimensional KTAB, 
section 4, page 18.

The Central Position Theorem (CPT) was then 
introduced as an alternative to overcome the 
limitations of these restrictive assumptions:

proportional voting was allowed instead of 
binary voting;

multidimensional and even nondimensional 
questions can be modeled; and

actor utility curves can take on a variety of 
forms.
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Testing KATB

A common question: Has KTAB been tested? 

KTAB is a toolkit for building models (dynamic or static); it is not itself a model. Like all other theoretical 
frameworks for building models of problems, there is a confusing level of abstraction when discussing the 
theory per se, as distinct from explaining a particular model within the theory. The problem appears with 
well-known and well-established theories such as the theory of linear regression or convex optimization: 
there are abstract terms which can only be given concrete meaning for a particular model within the theory. 
For example, the fundamental equation of linear regression is the following:

If one were to ask what a particular value represents, the only general answer is “it depends”. Is the theory 
being used to model a legislative, microeconomic, pre-industrial military, astronomical, stock market 
speculation, macroeconomic, medical, or legal relationship – or something else entirely? What does the 
range of indices represent? Is linear regression “correct” in general? Again, it depends on the problem.

Some models may work in as much as they accurately describe reality. Some models may not work in that 
they fail to accurately describe reality. A theory can be considered useful so long as it does not preclude 
the construction of models that accurately describe reality. For example, linear regression is not right or 
wrong in general, but it can be used to produce accurate models in some circumstances. Similarly, the kind 
of models that KTAB can produce have certainly been used to great effect and shown to be plausible and 
insightful reflections of those real world CDMPs they modeled.

We introduce several abstract terms whose interpretation depends on the problem being analyzed, the 
most important being ‘actor’, ‘option,’ and ‘influence’. We leave these abstract terms undefined in the hope 
that an intuitive sense will emerge from considering how they are used in particular cases. In essence, the 
question of whether or not KTAB works or is correct, is more simply a question of:

whether or not it allows one to build models that accurately reflect reality; and

whether or not it makes it easy to construct such models.

In this instance we believe the answer is “yes”. As discussed in section 7.4 of Unidimensional KTAB, KTAB 
style models have been rigorously tested on several hundred years of data on European wars, on all US 
Congressional votes and several thousand policy analyses. Where the models are appropriate, they have 
been shown to be highly useful.

𝑦𝑦! = 𝑎𝑎!"𝑥𝑥!"
!

	
  

	
  

Introducing a Generalized Approach for Modeling CDMPs
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coalitions will emerge. A coalition can be seen as 
the set of actors voting for a particular option.

For instance, the coalition of actors supporting 
option α over β, that is the set of actors for which

                       vi (α: β) > 0                                (6)

It can be written as

           c (α : β) = {i│vi (α: β) > 0}                 (7)

The total strength of that coalition is then s(α:β) 
which can be written as the sum of the influence 
exerted for α over β :

(8)

The total strength of the coalition supporting option 
β over α is the sum of the influence exerted for β 
over α:

(9)

𝑠𝑠 𝛼𝛼: 𝛽𝛽 = 𝑣𝑣! 𝛼𝛼: 𝛽𝛽
!∈! !:!
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What is a Markov Process?
Markov processes are used to describe situations where what happens next depends on the current 
situation. Examples might include

1.	 The weather. Imagine that if a day had clear skies, the probability of the following day having clear 
skies was 70%. If the day was overcast, the probability of the following day being overcast was 
55%. We could plot out a random walk through time, determining each day’s weather (clear or 
overcast skies) according to these probabilities.

2.	 A running hare. Hares tend to run in circles. We can imagine a particular hare which, following a 
right turn will turn right again with 90% probability, but following a left turn will turn left again with 
80% probability. Again, we can chart out a prediction of left and right turns for the hare based on 
these probabilities.

In Markov processes, the probability of jumping to a particular state (clear skies or overcast; left or right 
turns) depends purely on the current state (what the weather is today; what the direction of the last turn 
was) and ignores history (the probability of tomorrow’s being overcast depends purely on whether today 
was overcast, regardless of the state of yesterday’s skies).

In the case of a CDMP, the Markov process describes the probability with which any option (and there is no 
limit on the number under comparison, as long as it is finite) can emerge as the favored option, given the 
current set of actor strengths and preferences.

At each turn in the Markov process a probability distribution can be written to describe the probabilities 
of moving to each alternative state. The limiting distribution is the stable distribution of probabilities that 
emerges as the number of turns approaches infinity.

2.1 The Probabilistic Condorcet Election



21Multidimensional Bargaining Using KTAB

The probability that option α will be selected over 
option β can be written as

                                                                     (10)

and depends of the relative strength of support for it:

                                                                     (11)

At any given moment, there is a probability 
distribution over the options that describe the 
probability that any particular option will be the 
favored option at that moment. The favored option 
can change, with the likelihood controlled by the 
relative support of alternative options. This is a 
Markov process, and simple iterative algorithms 
to calculate the stable, limiting distribution of the 
probability distribution are well-known.

The set of options being advocated is a state, 
written as

                                                                   (12)

Where θ denotes an option under consideration and 
M is the number of options being advocated in a 
particular case. M is often equal to N (the number of 
actors) but need not always be. Some actors may 
advocate the same position, setting M < N.

For the state S, the probability of option α in the 
limiting distribution is written as P [α│S ]. The entire 
process of determining the generalized votes, the 
coalitions, the transition probabilities and the limiting 
distribution is a PCE. We term the most likely option 
the ‘probabilistic Condorcet winner’ (PCW).

When the standard deterministic Condorcet winner 
(DCW; as described in Unidimensional KTAB, 
section 4.2, page 19) exists, it is almost always  
the PCW.

𝑃𝑃 𝛽𝛽 → 𝛼𝛼 	
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Under certain carefully designed sets of options 
and voting rules, it is possible to determine a 
closed form solution for the PCW. A closed form 
solution is one that can be written out algebraically 
through a series of equations; open form solutions 
require simulations to derive possible answers. 
One celebrated example is the Median Voter 
Theorem presented by Duncan Black (1948), using 
a deterministic special case of the general theory 
presented here.

2.2 Using Probabilistic 
Condorcet Elections to Model 
CDMPs
The PCE can be used to develop many models 
of bargaining and negotiation among agents. The 
general theory is as follows.

The expected utility of the state S to actor i is the 
following:

(13)

The equation is really nothing more than a weighted 
average, calculated as the sum of the utility of each 
option (ui (θm)) multiplied by the probability of that 
option (P [θm│S ]).

This raises the first important point: the utility of any 
state for an actor is a trade-off between the utility of 
the option and its probability.

This enables us to model strategic voting, where 
actors look beyond the narrow utility of an individual 
option and instead vote for favorable outcomes. 
An actor might propose and vote for an option that 
has a lower utility to it than the preferred option 
but by virtue of its higher probability (an indication 

𝑢𝑢" 𝑆𝑆 = 𝑢𝑢" 𝜃𝜃& 𝑃𝑃 𝜃𝜃&|𝑆𝑆
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Introducing a Generalized Approach for Modeling CDMPs
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that position, but also how likely that and the other 
positions are to occur. This is just the utility to i of 
the new state, S’ which we can calculate in exactly 
the same way as for state S :

𝑢𝑢" 𝑆𝑆$ = 	
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                 (15)

 
Thus, the gain in utility for actor i is the difference 
between the two utilities:

𝑔𝑔" 𝑖𝑖, 𝛼𝛼	
  |	
  𝑆𝑆 = 𝑢𝑢" 𝜎𝜎 𝑖𝑖, 𝛼𝛼	
  |	
  𝑆𝑆 − 𝑢𝑢" 𝑆𝑆 	
  
=	
  𝑢𝑢" 𝑆𝑆- − 𝑢𝑢" 𝑆𝑆 	
           (16)

A CDMP can be modeled as a series of steps. In 
each step, each actor independently selects its 
next position to maximize its gain gi. When no actor 
changes its position, the CDMP stops: at this point 
the actors are in a Nash equilibrium where each has 
maximized its expected utility given the positions of 
the others.

of support from other actors) could emerge as the 
winner and so block the emergence of an option 
with even lower utility.

How, then, does an actor ‘decide’ to change 
positon? Suppose that in state S, actor i changed 
its position from θi to α. By way of example, we can 
view this as actor 2 moving from

to

In shorthand, we can write this new state, Sʹ, as

(14)

where σ denotes a substitution.

The utility which actor i gains by changing its own 
position depends on not only that value to itself of 
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2.2 Using Probabilistic Condorcet Elections to Model CDMPs
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3. The Fundamental Steps of Bilateral 
Negotiation

In Unidimensional KTAB we presented the 
outcomes of CDMPs as dependent upon simple 
voting rules that could be solved mathematically. 

In the section above we have again described how 
we can determine winning outcomes given the 
different coalitions of support.

In both cases, the mathematics summarized 
a complex story: that actors were putting forth 
proposals and counter-proposals and voting for 
and against the various options in accordance with 
their influence, the perceived stakes and the other 
variables we have introduced. We now explain what 
we really mean by this simplified explanation.

We begin any simulation with the data collected. As 
a snapshot of actor positions along with influence 
and salience scores, these represent a State. The 
initial state, determined by the collected data, is 
State 0. Subsequent turns of the simulation produce 
new states.

In the simple dynamic CDMP, the actors change 
their positions by generating a series of proposals 
and counter-proposals until a stable state is 
reached. Actors craft proposals that improve the 
likely outcome from their perspective, while winning 
enough support that the whole group prefers the 
new proposal to the old. They do not change their 
criteria of what is desirable; they change their 
positions to better achieve those criteria. This 
continues until no actor can improve their position, 
at which point a stable state has been reached. The 
most likely outcome of the simple dynamic CDMP 
is not necessarily one to which all actors agree: 
weak actors might be overruled by strong ones. The 
probable winner for each turn is shown through a 
probability curve.

In none of the models put forward in Unidimensional 
KTAB did actors change their positions or utility 
functions; actors merely had positions and voted 
accordingly. This paper describes how we add 

State 0
Turn 1

State 1

Assessment
Targeting
Proposal

Resolution

Figure 3.1 ‒ States represent the set of positions being advocated, along with influence and other scores. The model is run 
during each turn to generate a new state. Source: KAPSARC
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an extra level of sophistication in the modeling of 
how one actor tries to induce a change in position 
of another actor through a negotiation round. 
Inducement here simply refers to the ability of 
one actor to persuade another to change both its 
underlying position and view of utility. This is akin to 
changing someone’s opinion to coincide with your 
view, rather than just getting them to support you 
without actually agreeing with you.

This is the complex dynamic CDMP presented 
in Chinese SOE Reform: a stylized negotiation 
simulation that includes not only voting according 
to some voting rules, but also negotiations in which 
one actor tries to induce another to change its 
position (by altering its view of its own utility curve).

Each negotiation turn can be understood through 
the formalized lens of a stylized model of four parts 
which, in each round of bilateral negotiations, must 
be performed in their set order. Note that while the 
four steps must be carried out in sequence, within 
each step the calculations for each actor can be 
made in parallel.

1.	 Assessment. Separately, each actor, i, 
develops its own perspective on the current 
situation. This includes estimating the 
‘revealed preferences’ of other actors, based 
on their current positions.

2.	 Targeting. Separately, each actor, i, 
assesses all the other actors to identify 
another actor, j, whom it would be most 
beneficial to try to influence. This includes 
assessment of the stakes for each side, as 
well as the likely support or opposition of all 
third parties who might or might not become 
involved.

3.	 Proposal. If actor i can identify a worthwhile 
target j, then actor i develops a proposal 

of what new positions i and j should adopt. 
As j was selected to be weak compared 
with i, including in terms of support from 
third parties, this is likely to involve large 
concessions on j’s part and only minor 
trade-offs on i’s part. This bargain is 
developed as the Nash Bargaining Solution, 
taking into account the differing utilities and 
beliefs of the two actors.

4.	 Resolution. Generally, after the previous 
step, each actor will have several bargains 
which they either sent or received. Often, 
very weak actors will be targeted by multiple 
stronger actors. At most, one of the stronger 
actors can impose a new position; possibly 
none will succeed if the weak actor can 
rally enough allies to maintain its most 
preferred, status quo position. Mid strength 
actors may send bargains to those weaker 
than themselves, while simultaneously 
receiving bargains from those stronger 
than themselves, but at most only one of 
the bargains will actually occur because 
the actor can have only one new position. 
Separately for each actor, the competing 
bargains are resolved by an assessment 
of the balance of power favoring each 
alternative. The winner–possibly the status 
quo–is the actor’s new position.

As a result of these many calculated interactions, 
there is a high degree of complication in the set 
of potential results that can emerge on a turn-by-
turn basis. Consequently, a detailed narrative can 
emerge for each individual actor’s behavior in each 
simulation.

With the underlying theory described and the basic 
concepts of negotiations established, we can now 
step through the logic of each stage.

3. The Fundamental Steps of Bilateral Negotiation
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4. The Mathematics of Bilateral 
Negotiation

4.1 Assessment

4.1.1 Assessing Distances

As mentioned earlier, a key feature of the SMP is 
that each actor regards its own current position 
as the most strategically desirable, with declining 
utility assigned to positions further away. Because 
actors attribute different levels of salience to 
different dimensions, each actor uses its own 
salience weighted Euclidean distance to assess the 
difference between another position and its own:

(17)

where sik is the salience to the i-th actor of the k-th 
dimension, θik is the coordinate of the presentation 
of the i-th actor over the k-th dimension (see 
equation 3).

In one dimension, this simply reduces to the 
distance between two points on a line:

di (θ) = │θi ‒ θ│                          (18)

where di (θ) is the distance of actor i (at position θi ) 
from an arbitrary position θ.

The K-dimensional position is inside a 
K-dimensional box, [0,1]K. Therefore the maximum 
difference along each axis is 1, and so the 
maximum possible salience weighted difference is 
also di (θ) = 1. The minimum is zero difference, when 
θi = θ.

For convenience, we use the following abbreviation: 
dij = di (θj), where dij is the distance of actor i from 
the position adopted by actor j. Note that usually  
dij ≠ dji since because the different actors have 
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different saliences, they measure distance 
differently.

In the SMP, all the actors must have the same 
understanding of the structure of the issue 
so all actors agree on the matrix dij. This is 
not a requirement in the CPT, as described in 
Unidimensional KTAB.

4.1.2 Assessing Risk Tolerance

An essential feature of actors is their attitude toward 
risk, which is determined by the shape of their utility 
curve. We will use the standard textbook definition 
of risk aversion, with three categories:

1.	 Risk neutral;

2.	 Risk averse; and

3.	 Risk seeking.

Figure 4.1 gives the utility curves for four different 
actors, Red, Green, Blue, and Brown broken line, 
against distance.

Risk neutral: Consider the green line. This indicates 
the utility to Green of other positions, which declines 
with increasing distance. The utility of a position at 
distance 0 (i.e. Green’s own position) is exactly 1, 
the utility for a position at distance 0.2 is 0.8, and so 
on out to the utility of 0 for a position at distance 1. 
In general, Green’s utility can be described as  
u = 1– d. For clarity, we will color numbers denoting 
utility blue and those denoting distances red; those 
denoting probabilities will be shown in grey.

If Green were to be offered a risky situation where 
there would be 70% chance of achieving an 
outcome at distance 1 and 30% chance of achieving 
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an outcome at distance 0, then the expected utility 
to Green of that risky situation is 0.3:

0.3 = 0.7 x (1 ‒ 1) + 0.3 x (1 ‒ 0)

Consider a riskless situation in which Green can 
achieve exactly the expected outcome, which has a 
distance of:

0.7 = 0.7 x 1 + 0.3 x 0

The utility to Green of this riskless situation is 
therefore:

0.3 = 1 ‒ 0.7

Thus, because the green utility curve is precisely 
a straight line, the average utility of the outcome is 
the utility of the average outcome. Green has no 

preference between a risky and riskless situation, so 
long as the expected outcome is the same. Further 
reasoning along these lines shows that Green 
would make choices between situations based 
solely on the expected outcome, regardless of the 
risk inherent in each; such behavior is called ‘risk 
neutral’.

Risk averse: Consider the red and blue utility 
curves, which are not straight lines. For both Red 
and Blue, the utilities of the two possible outcomes 
are the same as they were for Green: utility 0 for the 
outcome at distance 1 and utility 1 for the outcome 
at distance 0.

Looking at the risk case outlined above, the average 
utility of the outcome is still 0.3 for Red. However, 

	
  

	
  Figure 4.1 ‒ Curved Utility Functions – Four different risk tolerances. Green (risk neutral): utility falls linearly with distance such that 
the utility of the average is the same as the average utility making Green neutral between them. Blue and Red (risk averse): utility 
curve is convex, with utility falling only a little over short distances but more over long distances. The average utility (risky) is lower 
than the utility of the average (riskless), and therefore a risk premium is demanded. Broken Brown (risk seeking): utility curve is 
concave. 

Source: KAPSARC

4.1.2 Assessing Risk Tolerance



27Multidimensional Bargaining Using KTAB

utility of the average outcome (0.7) is approximately 
0.4. For Red, the utility of the average outcome is 
greater than the average utility of the outcomes. 
Red would have to be paid a risk premium to take 
the risky situation over the riskless situation, even 
though both have the same expected outcome (a 
distance of 0.7). This is the textbook definition of 
‘risk averse’: the actor has a convex utility curve, 
and hence demands a positive risk premium.

Risk averse behavior is taken for granted throughout 
the world of economics and finance, in which the 
risk free assets offer the lowest interest rates, 
and progressively more risky assets have to 
offer progressively higher risk premiums. Indeed, 
increasing levels of interest on loans‒compared 
with the risk free rate‒are often taken as a surrogate 
for market perceptions of risk of default, precisely 
because all the financial actors are risk averse, to 
one degree or another.

Because Blue’s utility curve has greater curvature, 
Blue would demand an even higher risk premium 
than would Red. In other words, greater curvature 
corresponds to greater aversion to risk, so higher 
risk premiums are demanded to make up for it. With 
this parameterization, Blue’s risk premium is exactly 
twice Red’s risk premium.

Risk seeking: in theory, actors could be risk 
seeking, which would appear as a concave utility 
curve (similar to the Brown broken line). This is 
sometimes observed for trivial risks, such as 
gambling small amounts of money simply for the 
excitement, while knowing that ‘the house always 
wins’. Such behavior rarely persists when the stakes 
are significant. For example, literally risk seeking 
investors would seek out risk as being a good thing 
in itself, so they would voluntarily choose a financial 
instrument which was guaranteed to lose money, as 
long as it made up for that by running a high enough 

risk of losing even more money. Needless to say, 
markets would be swift to take advantage of such 
behavior, with serious adverse consequences for 
the risk seeking investors.

The demonstration version of smpc currently in 
KTAB includes the risk tolerance parameter R to 
describe the curvature of actors’ utility curves. 
These can range from very risk tolerant, to risk 
neutral, to highly risk averse, so that 0 ≤ R ≤ 1, as 
per Figure 4.1. Of course, some model builders 
might choose to use negative R values for risk 
seeking if they decided that was appropriate.

Compromise: in a bargaining context, curvature 
also manifests itself as willingness to compromise. 
Consider the changes in utility for Red, Green and 
Blue from a very small compromise, say to a new 
position at a distance of 0.1. Green would perceive 
this as involving a 0.10 decline in utility, Red would 
perceive this as costing about 0.05, while Blue 
would perceive it as costing about 0.01. Thus, Blue 
would be the most willing to bargain away 0.1 of its 
position, while Green would be the most resistant 
to doing so. This behavior has nothing to do with 
uncertainty or risk, as the terms of the bargain are 
precise and deterministic: a shift by 0.1.

This compromise behavior occurs whether the 
bargains are voluntary or coerced. It would take 
a small promise of reward to make Blue shift its 
position (voluntary) or only a small threat of harm 
(coerced). It would take the largest reward to 
make Green shift (voluntary) or the largest threat 
(coerced).

Given the salience-weighted distance function and 
the values, the utility curve for each actor can take a 
particularly simple form:

U = (1 ‒ d)(1 + Rd)                             (19)

The Mathematics of Bilateral Negotiation
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If we include all subscripts and parameters, the 
same formula appears as follows.

Ui (θ) = (1‒ di (θ)) (1 + Ri di (θ))                   (20)

This is the equation that has been used to draw 
Figure 4.1 and gives the following:

In the risk neutral case R = 0, this reduces to the 
straight green line: U = 1 ‒ d;

In the risk averse case R = +1, this reduces to 
the convex blue parabola: U = 1 ‒ d2; and

In the risk seeking case R = -1, this reduces to 
the concave brown parabola: U = (1 ‒ d)2.

This utility function is particularly simple, but it is 
confined to the differences and utilities in the range 
[0,1].

In order to bargain (or even to determine which 
other actors are good targets for bargaining), 
it is necessary to have an idea of their relative 
willingness to bargain, i.e. to estimate their 
parameters. In the current demonstration smpc 
model, this is done by looking at R in terms of 
revealed risk aversion.

As mentioned earlier, the PCE produces an 
estimate of the probability that each actor’s position 
will actually be adopted. Analogous to ‘revealed 
preference’ in economics, the willingness of actors 
to advocate positions which have little chance of 
success can be seen as revealed risk tolerance. 
Conversely, those actors which have adopted the 
positions most likely to succeed have revealed a 
high aversion to risk. This reasoning is reflected in 
the following algorithm.

To estimate the Ri parameters for each actor, we first 
perform a PCE, which determines the probability for 
each actor’s position. Probabilities are assigned to 
the position, not to the actor, because several actors 

might adopt the same position. If that position is 
adopted, then each one of the actors has its position 
adopted, because they are all the same position. 
Thus, the sum of probabilities over positions is 
exactly 1, while the sum of probabilities over actors 
is often greater than 1 because of double counting 
(or triple, or quadruple, or more).

The highest and lowest probabilities are denoted as 
PH and PL respectively. We rescale the probabilities 
so that the most likely actors are assigned a risk 
aversion of 1 and the least likely actors are assigned 
a risk aversion of 0:

(21)

If the modeler wishes to use in the ranges [-1, +1] or 
[-1/2,+1], similar formulae for R can easily be derived.

The alert reader will note that there is a circular 
dependency in this reasoning. The Ri values are 
determined from Pi values, which are determined 
by the PCE, which depends on utility values, 
which depend in turn on the Ri values. This circular 
dependency is broken by employing a two-step 
method.

1.	 Ri values are set to zero and a PCE 
conducted over the positions; then

2.	 The calculated Pi values are used to 
determine the second set Ri values.

Obviously, the two sets of Ri values differ, so this is 
in some sense not a self consistent estimate. This 
process could be iterated so as to arrive at a stable 
and self consistent set of Ri values, but this has 
been numerically observed to have little effect on 
the final Ri values. Further, the difference between 
the two-step estimate and the self consistent 
estimate are small compared with the effects of 
anchoring and adjustment (see next section). The 
two-step method is therefore a useful approximation.

𝑅𝑅" =
𝑃𝑃" − 𝑃𝑃&
𝑃𝑃' − 𝑃𝑃&
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Alternative utility functions in KTAB
As KTAB is a toolkit for building models, it is worth a short diversion to consider when alternative utility 
functions might be more useful. In economics and finance, a common utility function which is not limited to 
[0,1] is the negative exponential, where a is the risk aversion parameter:

Note that when│ax│is small compared with 1, the utility curve is approximately linear and risk neutral:  
U(x) ≈ x. Risk aversion exerts more of an effect as the potential gains or losses grow larger.

If currency is measured in USD, then the units of ɑ are 1/USD, so the right hand side of the equation 
has units USD, as required. For example, if the actor saw losing amount D as being twice as harmful as 
gaining D is helpful, then its risk aversion parameter would be (ln2)/D. The investor’s behavior would be 
approximately risk neutral as long as the potential gains or losses x were small compared with D/(ln2) so 
that│ax│would be small compared with 1.

For any risky asset, the ‘certainty equivalent’, Cx, is that dollar amount for which a risk averse investor would 
assign equal utility to the certain dollar amount and to the risky asset. Consider an asset whose return x 
is normally distributed with mean μx and variance 𝜎𝜎"#	
  . With the negative exponential utility function, the 
certainty equivalent of a normally distributed return takes the familiar mean variance form:

Note that for a risk seeking investor, a < 0 , so no matter how negative is the expected return, a large 
enough risk will render the investment attractive.

For models of economic and financial bargaining, a KTAB modeler could choose to rescale outcomes 
into a [0,1] utility range, or might choose to work directly with the more familiar Cx values. A procedure for 
estimating a would have to be developed, such as estimating an actor’s revealed risk attitude by finding that 
a which maximizes the certainty equivalent of the actor’s initial position. In either case, the basic bilateral 
negotiation process could still be employed, as it is not dependent on the particular shape of any actor’s 
utility functions.

𝑈𝑈(𝑥𝑥) 	
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4.1.3 Adjusting Risk Tolerances

The phenomenon of ‘anchoring and adjustment’ 
is widely observed in psychological studies and is 
routinely exploited in efforts to manipulate opinion. 
The general statement is that people estimate 
quantities by extrapolating from what is familiar, but 
they usually do not extrapolate enough.

This is reflected in KTAB by differentiating between 
an actor’s actual risk attitude and how other actors 
estimate their own risk attitude.

We denote actor h’s estimate of actor i’s risk attitude 
by 𝑅𝑅"# = 𝑅𝑅##	
  

	
  

If the actors remain fully anchored and do not 
adjust, then their estimate of another’s risk attitude 
is exactly their own:

While this might seem like an implausibly bad 
estimator, the phenomenon is common enough that 
strategic planners are routinely cautioned against 
‘mirror-imaging’, i.e. assuming that their opponents 
have the same utility values, and hence risk 
tolerance, as themselves.

Another estimator is simply that actors fully and 
completely adjust their estimates, and always 
perceive the other actors perfectly:

Given the ubiquity of anchoring and adjustment, a 
more plausible estimator might be one where the 
actors take their own risk attitude as the anchor, 
and adjust somewhat toward the other actor’s true 
attitude, such as the following, where the estimator 
is weighted two-thirds anchored, one-third adjusted:

                                                                         (22)

Whichever version of adjustment is selected, this 

𝑅𝑅"# = 𝑅𝑅##	
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leads immediately to actor specific estimates of all 
the relevant quantities, such as utilities:

(23)

These utilities can be used in an actor specific 
PCE to also determine      for that actor’s subjective 
probabilities. The actor specific numbers are used 
extensively in the second step of our simulation of 
bilateral negotiations, targeting.

While the details of bargaining are discussed 
later, we note now that the variation among actor 
specific estimates can play a very significant role 
in bargaining. For example, differing estimates 
might lead two actors each to think it is likely to 
win if it were to initiate a conflict with the other, so 
each one goes into the bargaining thinking it has 
the upper hand. Conversely, actors A and B might 
both believe that A has the upper hand over B, but 
they disagree as to how much. If A thinks it has 
only a small advantage, while B thinks that A has a 
large advantage, then A might seek much smaller 
concessions than could have been obtained.

While the specific amount of adjustment (e.g.1
3
 , 1
2

or 2
3

 of the difference) does change the precise 
magnitude of such differences, it does not change 
the signs or the qualitative structure

Notice that in the basic SMP, KTAB supports nine 
kinds of assessment models, depending on the 
following parameterization. The choices in the 
demonstration smpc can be changed simply by 
switching an enumerated option (default settings are 
in italics):

R-range: [0,1], or [-1/2, 1], or [-1,+1]

R-adjustment: full, partial, or none

𝑈𝑈"# 𝜃𝜃 = (1 − 𝑑𝑑"(𝜃𝜃))(1 + 𝑅𝑅"#𝑑𝑑"(𝜃𝜃))	
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4.2 Targeting
The essence of the targeting step is that each actor, 
i, tries to identify the other actor, j, over which i has 
the largest advantage and thus can most likely shift 
to a position more to i’s liking.

This analysis is done by analyzing not only a game 
tree between the two principal actors i and j, but 
also some subsidiary game trees for third parties. 
To aid in formalizing these concepts, we introduce 
three new notations:

The symbol i → j denotes the event in which 
i tries to change the position of actor j. Actor 
might simply acquiesce if the issue has low 
salience, or might resist.

The symbol i : j denotes a contest between 
actors i and j as they try to change each other’s 
position, each backed by a coalition of third-
party supporters.

The symbol i ≻  j denotes the event that i 
successfully imposes its position on j, and vice 
versa for j ≻  i.

•	 This is generally a hypothetical event, where 
each actor analyzes the likely consequences 
of an outright struggle, so as to determine 
what concessions can be plausibly obtained 
in bargaining.

•	 The curved ≻  symbol is distinct from the 
straight numerical inequality > symbol .

The set of positions currently advocated by all the 
actors at the start of the turn is termed the ‘state’ at 
that point in time. Each actor assigns a value to the 
entire state, which is simply the average value of all 
the actor’s positions.

Unfortunately, at this point we must introduce a 
plethora of subscripts and superscripts to express 
the many possible combinations that will arise.

4.2.1 Utilities

Remember that the utility of a state – U(S) – is equal 
to the expected utility of all the individual positions 
– θk. In this instance we are assuming equal 
probability of each position, hence dividing by the 
number of positions, 1

M
, in the status quo ante.

Actor h’s estimate of the utility to actor n of the state 
is simply the average over the initial positions of all 
N actors:

(24)

The utility of the hypothetical state in which i 
successfully gets j to adopt i’s position is therefore 
the following:

𝑈𝑈"# 	
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            (25)

Where all the positions have a uniform probability 
and are unchanged except that j’s position is 
replaced by i’s position.

When the meaning is clear from context, we will 
sometimes use the following compact notation:

(26)

and

(27)

Thus, h’s estimate of the gain to n from i defeating j 
would be

𝑈𝑈"# 𝑆𝑆 =
1
𝑀𝑀
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We could expand all the summations and show that 
most of the terms cancel in this subtraction; later on 
it will become clear that the     terms cancel when 
computing probabilities. Nevertheless, we present 
the formulae in this way because it makes clear that 
evaluation over whole states is involved, and in the 
Resolution step, the cancellations are not so neat.

The evaluation of an entire state is crucial to the 
representation of naïve versus strategic voting. 

Naïve voters simply vote for whatever policy 
which they expect would have the best outcome 
if implemented. As mentioned earlier, evenly 
weighting the positions in a state is essentially 
the same as voting according to the value of 
positions: it models naïve voting. 

Strategic voters allocate their vote so as to get 
achieve the best outcome for themselves, given 
how they expect other voters to behave. This 
can lead to much more sophisticated behavior, 
such as supporting proposals not because they 
are desirable in themselves but because they 
help split the support for a proposal seen which 
was even less desirable, thus allowing a more 
desirable alternative to win. 

Using an embedded PCE to estimate the probability 
of each outcome, rather than just assuming equal 
probabilities, has the effect of modeling strategic 
voting, because it allows the actors to estimate how 
their actions affect the probability that second or 
third parties will succeed or fail.

Although the differences between naïve and 
strategic voting are quite profound, all the following 
formulae should be taken as equally applicable to 
both cases, because they differ only in how the 
utility of a whole state is estimated. This is just one 
example of how KTAB provides a unified framework 
for modeling quite diverse behaviors.

1
M

As mentioned earlier, the total salience of an actor is 
essentially the probability that it will resist changes 
to its position, rather than acquiesce because it is 
focused on other (un-modeled) issues. Thus, the 
expected value of a challenge is the probability-
weighted average of the value of acquiescence and 
a contest:

(28)

In turn, the expected utility of a contest is the 
probability-weighted average of the value of success 
or failure:

(29)

The criterion for i's selecting the best target j is to 
maximize i’s expected gain to itself of challenging j, 
compared with the status quo:

(30)

If that maximum is zero or negative, then i is too 
weak to try to change any other actor’s position.

4.2.2 Generalized Voting

While generalized voting has been mentioned 
several times earlier, at this point it is necessary to 
formalize the concept.

Suppose actor i is faced with a choice between two 
alternatives, x and y. i’s generalized vote, vi(x:y) is 
the amount of influence exerted to promote x over 
y. It is positive if i favors x; it is negative if i favors 
y. These alternatives might be the positions of 
individual actors, but they might be more complex 
alternatives (such as a set of positions, or state), so 
we do not denote the alternatives simply by θ.

Note that it is quite likely that  
because the actors’ estimated utilities usually differ.
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than the many, but barely motivated, 
cost-bearers.

(33)

Again, note that with utilities in the [0,1] range, this 
avoids artificially extending an actor’s influence 
beyond the [ -wi,+ wi ] range.

For wi = 1, the three voting rules are contrasted in 
Figure 4.2.

Currently, KTAB also offers two more voting rules 
which introduce moderate nonlinearity into the 
proportional voting rule:

4.	 Binary-Proportional voting mixes 
proportional and binary voting. This results 
in a linearly sloped response curve, but with 
a (nearly) vertical jump around 0: 

     𝑣𝑣𝑣𝑣𝑣𝑣$% 𝑥𝑥: 𝑦𝑦 = 1 − 𝜆𝜆- 𝑣𝑣𝑣𝑣$% 𝑥𝑥: 𝑦𝑦 +	
  
𝜆𝜆-𝑣𝑣𝑣𝑣$% 𝑥𝑥: 𝑦𝑦 	
  

	
  

(34)

The slope factor λb=0.2 was selected so that the 
vertical jump in the middle was half the height 
of either linear slope. For wi =1, the maximum 
vertical deviation from the Proportional voting 
rule is ±λb right at zero utility difference.

5.	 Cubic-Proportional voting mixes 
proportional and cubic voting. It is 
approximately linear in the mid -range, but 
with curves up and down at the extremes: 
 
 𝑣𝑣𝑣𝑣𝑣𝑣$

% 𝑥𝑥: 𝑦𝑦 = 1 − 𝜆𝜆- 𝑣𝑣𝑣𝑣$% 𝑥𝑥: 𝑦𝑦 +	
  

𝜆𝜆-𝑣𝑣𝑣𝑣$% 𝑥𝑥: 𝑦𝑦 	
  

	
  

(35) 
 
Again, for wi = 1, the VPC rule is 
approximately linear around zero and 
passes through the (0,0) origin. Although 
the rules coincide at zero, the Proportional-

The KTAB toolkit offers five different rules for 
generalized voting. The main smpc model assumes 
that each actor i has a single capability measure 
for maximum overall influence, ci. Because actors 
have different overall saliences, they will exert that 
capability to differing degrees; for brevity we employ 
the notation wi = sici. Again, we require si < 1 so that 
the influence actually exerted, wi , does not exceed 
the maximum capability to exert wi, does not exceed 
the maximum capability to exert influence, ci. Note 
that the different saliences of different dimensions 
are used in the calculation of the utility by way of the 
distance.

1.	 Binary voting is the exertion of all the 
actor’s influence to promote whichever 
outcome it prefers:

(31)

2.	 Proportional voting is the exertion of 
the actor’s influence in proportion to its 
perceived stakes, which is how much 
it stands to gain or lose from the two 
alternatives:

(32)

Note that in the SMP, utilities are always in the [0,1] 
range so that the difference in utility is always in the 
[-1,+1] range, which avoids artificially extending an 
actor’s influence beyond the [ -wi,+ wi ] range.

3.	 Cubic voting is designed to model the 
situation where actors respond little to small 
changes, but respond energetically to large 
losses and to large gains. The motivation 
for including this voting rule comes from the 
political advice “focus benefits and diffuse 
costs”. The point of the advice is to exploit 
situations where a few highly motivated 
beneficiaries will exert more total influence 
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Cubic rule has a slope of only 1- λc around 
the origin, compared with the Proportional 
rule’s slope of exactly 1. The maximum 
vertical deviation occurs at two distinct 
points on either side of zero. If we set λc as 
follows, the maximum vertical deviation of 
the Cubic-Proportional rule (on either side 
of zero) will be the same as the maximum 
vertical deviation of the Binary-Proportional 
rule (exactly at zero): 
 
                                                              (36) 
 
With λb = 0.2, we get λc = 0.5196

For this parameterization, with wi = 1, the Proportional, 
Binary-Proportional, and Cubic-Proportional voting 
rules are contrasted in Figure 4.3.
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When we wish to indicate that any of the five voting 
rules could be used in voting between alternatives x 
and y, we use the basic symbol v(w,Ux,Uy) or v(x:y) for 
short. This is the usual case: wherever a voting rule 
is used, any of them could be used.

4.2.3 Coalitions and Probabilities

While the utility and salience terms 𝑈𝑈"" 𝑖𝑖 𝑗𝑗	
   S 	
  →
have been described, the probability estimates 
have not. The probability that the the i-th actor will 
succeed in changing j’s position depends critically 
on the strength of each coalition backing i or j. Thus, 
a comparatively weak actor with many strong allies 
could easily pressure a comparatively strong but 
isolated actor into making concessions. Note that 
‘strength’ is here a mixture of both intrinsic capability 
and the perceived stakes, which in turn depend on 
both policy distance and salience.
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Figure 4.2 ‒ Proportional, Binary, and Cubic Voting Rules. The amount of effort an actor exerts, compared to the stakes, is 
described by a voting rule. The simplest is the proportional voting rule, as depicted here in blue: the amount of effort depends 
directly on the stakes. Another rule is the binary (either/or) response, depicted here in green: the actor always exerts the maximum 
effort they can for their favored option, no matter how low the stakes. Another rule is the cubic response, depicted here in yellow: 
actors hardly react at all to small stakes, but their response then grows dramatically as the stakes increase. 

Source: KAPSARC
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Please refer back to section 2.1. Remember that the 
strength of the coalition backing alternative x over 
alternative y is just the sum of the influence which 
various actors exert in favor of x:

(37)

(38)

In section 2.1 we also stated that the probability that 
option x is selected over option y is simply:

(39)

We can now be more precise in our discussion of 
how the probabilities are calculated. Currently, KTAB 
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Figure 4.3 ‒ Proportional, Binary-Proportional, Cubic-Proportional Voting Rules. The amount of effort an actor exerts, compared 
to the stakes, is described by a voting rule. The simplest is the proportional voting rule, depicted here by the blue diagonal: 
the amount of effort depends directly on the stakes. The binary and cubic rules from the previous figure have been contracted 
toward the diagonal so that their deviations from proportionality are less extreme. The green binary-proportional rule keeps the 
discontinuous jump from favoring to opposing, but it now has some gradation in the response after that. The yellow proportional-
cubic rule keeps the reduced response for small stakes, but it now has some slope even near zero stakes. 

Source: KAPSARC
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provides two formulae for estimating the probability 
that one coalition will prevail over another.

1.	 The first assumes that probabilities vary 
linearly with coalition strength: 
 
                                                                 (40) 
 
And similarly for PLh (y ≻  x). 
 
Under the linear law, a 2:1 advantage in 
strength gives a 67% chance of success. 
Many empirical studies of strength (strength 
of sports teams, strength of political 
coalitions, etc.) assume the linear law and 
then use the observed probabilities to 
estimate the implied strengths.

𝑃𝑃𝑆𝑆# 𝑥𝑥 ≻ 𝑦𝑦 =
𝑠𝑠# 𝑥𝑥: 𝑦𝑦 *

𝑠𝑠# 𝑥𝑥: 𝑦𝑦 * + 𝑠𝑠# 𝑦𝑦: 𝑥𝑥 *	
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2.	 The second rule treats probabilities as 
varying with the square of coalition strength: 
 
                                                                (41) 
 
And similarly for PSh (y ≻  x). 
 
Under the square law, a 2:1 advantage in 
strength gives a 80% chance of success. 
Some empirical studies of the strength of 
military units take the observed probabilities 
and then use either PL or PS to estimate the 
implied strengths, depending on whether the 
analyst chooses the Lanchester Linear Law 
(more commonly used with ancient warfare) 
or the Lanchester Square Law model of 
combat (more commonly used with modern 
battles).

When we wish to indicate that either rule may be 
used, we use the basic symbol P.

The alert reader will notice that, in terms of 
statistical estimation from known probabilities, 
there is no essential difference between these two 
models. Suppose one uses PS to estimate strengths 
si,S and uses PL to estimate strengths si,L. Then (si,S )

2 
= si,L. However, in terms of estimating probabilities 
from strengths, there is a difference.

Remember that the strength of the coalition favoring 
x over y is the sum of the individual actors’ support 
for x over y. The strength of the coalition favoring 
option x over x itself is trivially zero, and so are 
all the diagonal entries of the Ci:j matrix used to 
tabulate the individual actors’ support for x over y 
in the KTAB output. When probabilities are then 
calculated from these numbers, the diagonal entries 
of the probability matrix found in KTAB’s output are 
set to 0.5. This is done for convenience to simplify 
the mathematics, rather like the decision that 0! is 1, 
rather than 0 or undefined.

𝑃𝑃𝑆𝑆# 𝑥𝑥 ≻ 𝑦𝑦 =
𝑠𝑠# 𝑥𝑥: 𝑦𝑦 *

𝑠𝑠# 𝑥𝑥: 𝑦𝑦 * + 𝑠𝑠# 𝑦𝑦: 𝑥𝑥 *	
  

When there are only two options, the limiting 
probabilities of the Markov Process, i.e. the stable 
PCE distribution, are exactly the probabilities 
originally determined by the strength ratios.

A simple example may help explain. Imagine seven 
actors choosing between two options using the 
proportional voting rule as per Table 4.1. We can 
then calculate the (linear) probabilities for each 
option straight from the initial coalition strengths:

The final probabilities are the simple ratio. However, 
with a PCE over three options, there is no simple 
formula for the stable distribution.

4.2.4 Principal Actor Voting

When actor i analyzes a possible effort to change 
the position of actor j, these are termed the principal 
actors and all others are termed third parties. While 
we have discussed the voting rules each might 
use, there are several different ways to assess the 
utilities they might use in voting.

While it might seem odd to analyze how actor i 
might vote in its own contest with j, some non-trivial 
interactions must be considered. For example, with 
the proportional voting rule, even when both actors 
see a large difference in position, the salience of 
the actors can have a large effect. There have been 
several instances in international relations where a 
powerful actor initiated conflict with a weaker actor, 
only to end up acquiescing because it (despite being 
more powerful) placed less salience on foreign 
adventures than the weaker actor placed upon 
national survival.

The simplest model of the two principal actors is 

0.42 =
6.466

6.466 + 8.856
	
  

0.58 =
8.856

6.466 + 8.856
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that they use naïve voting with proportional voting. 
Because they could use naïve or strategic voting 
for each of the five voting rules, this range of 
parameterizations allows ten submodels of how the 
two principal actors behave. For all ten models of 
i’s exertion of influence, the relevant difference is 
between i’s estimate of the utility to i of i imposing 
its position on j, and i ’s estimate of the utility to i of j 
imposing its position on i:

(42)

This will be positive, so it will contribute to i’s 
estimate of the strength of the ci(i:j) coalition.

Similarly for i’s estimate of j’s vote:

(43)

This will be negative, so it will contribute to i’s 
estimate of the strength of the ci( j:i) coalition.

𝑣𝑣"" 𝑖𝑖: 𝑗𝑗 = 𝑣𝑣(𝑠𝑠"𝑐𝑐", 	
  𝑈𝑈","-" , 	
  𝑈𝑈",-"" )	
  

	
  

𝑣𝑣"# 𝑖𝑖: 𝑗𝑗 = 𝑣𝑣(𝑠𝑠"𝑐𝑐", 	
  𝑈𝑈",#"# , 	
  𝑈𝑈","## )	
  

	
  

Actor Capability w Utility of option 1 Utility of option 2 vp(1:2) vp(2:1)

1 101.6 0.761 0.755 0.610

2 155.6 0.739 0.792 8.246

3 104.7 0.947 0.946 0.105

4 67.6 0.662 0.647 1.014

5 41.6 0.776 0.737 1.621

6 194.8 0.787 0.771 3.117

7 50.8 0.626 0.638 0.609

Coalition 
strength 6.466 8.856

Table 4.1 ‒ Calculating coalition strength. Seven actors choose between one of two options. The actors capability is shown, along 
with the utility each actor derives from each of the two options. The exertion of influence is then calculated (in this example) 
according to the proportional voting rule (see section 4.2.2). The strength of each coalition (with one coalition favoring option 1 
over option 2, and the other coalition favoring option 2 over option 1) is simply the sum of the individual votes of each actor. 
Source: KAPSARC
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4.2.5 Third Party Voting

As mentioned earlier, weaker actors can overcome 
stronger actors because of a difference in salience. 
Another way this can happen is through the 
influence of third parties, particularly strong third 
parties. Indeed, many of the conflicts during the 
Cold War were between comparatively weak actors, 
where each was backed by a coalition that included 
one super power on each side.

The simplest version of third party voting is 
naïve voting, where the only difference between 
i ≻  j and j ≻  i are the positions of the principal 
actors. Historically, many weak actors have 
backed a principal actor that they thought would 
win, expecting to gain wealth and power as part 
of a victorious coalition, only to find themselves 
suffering adverse consequences when their 
coalition was defeated. Similarly, strong third-party 
actors have intervened in what they thought were 
minor disputes, only to find themselves becoming 
committed to win or lose as part of an entire coalition.

These considerations lead to (at least) three 
submodels (see Tables 4.2-4.4) of how third parties, 
k, assess their stakes and hence how much 
influence to exert in the i : j contest. We introduce 
the notation that ik ≻ j denotes the event where k 
supports i, then i and k combined defeat j; similarly 
for the other three possibilities. Regardless of 
k’s behavior, the losing principal actor must (by 
definition of losing) adopt the position of the winning 
principal actor.

For any of these third party commitment rules, the 
value of the four resulting states can be computed 
as either the evenly weighted average (for naïve 

voting) or from a PCE (strategic voting). Each of the 
six possible submodels yields the four utilities  
𝑈𝑈"#(𝑖𝑖𝑖𝑖 ≻ 𝑗𝑗),	
  𝑈𝑈"#(𝑗𝑗 ≻ 𝑖𝑖𝑖𝑖)	
  ,	
  𝑈𝑈"#(𝑖𝑖 ≻ 𝑗𝑗𝑗𝑗)	
  

	
  
	
  

𝑈𝑈"#(𝑗𝑗𝑗𝑗 ≻ 𝑖𝑖)	
  

and 

Thus, the value to k of allying with i is the expected 
value of doing so:

(44)

And similarly for 𝑈𝑈"# 𝑖𝑖: 𝑗𝑗𝑗𝑗 	
  .  

With those expected utilities in hand, the contribution 
of k follows directly from the voting rule:

(45)

To analyze the value to k of the (ik:j) alliance versus 
the (i:kj) alliance in this restricted subgame, we 
must analyze not only the utility to k of the potential 
outcomes but also the probability of each potential 
outcome. This requires another assessment of mini 
coalitions supporting each side. To simplify the 
formulae, we define the following notation, which 
simply picks out positive values:

(46)

We consider only the restricted coalitions of i, j, and 
k. Thus, the strength of each coalition consists only 
of the vote of the principal actors, and a vote by k 
depending on which principal’s position is preferred, 
and by how much:

(47)

Similarly for the opposing restricted coalition:

(48)
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Uncommitted θ’i θ’j θ’k

ik≻ j θi θi θk

j≻ ik θj θj θk

i≻ jk θi θi θk

jk≻ i θj θj θk

Table 4.2 ‒ Uncommitted. Third parties do not change their position, no matter who they support or who wins. This can be 
represented as a table of outcomes against the new positions of actors.

Source: KAPSARC

Semi-Committed θ’i θ’j θ’k

ik≻ j θi θi θk

j≻ ik θj θj θj

i≻ jk θi θi θi

jk≻ i θj θj θk

Table 4.3 ‒ Semi-Committed. If its alliance wins, the third party can keep its initial, preferred position. If its ally loses, then it is 
forced to adopt the position of the winner, as follows.

Source: KAPSARC
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With these restricted coalitions, the success 
probability is calculated as before:

                                                                       (49)

During the search for the best j to target, all 
calculations are done from i’s perspective, so the 
estimator h = i. In the Targeting and Proposal phase, 
the perspectives of both i and j will be used, while 
in the Resolution phase, every actor’s actions are 
determined by its own individual perspective.

Notice that even in the basic SMP, KTAB supports 
six hundred submodels of targeting, depending 
on how utilities, coalitions and voting are 
parameterized. The choices made in the current 
smpc demonstration can be easily changed by 
flipping a parameter value; the values currently used 
are italicized.

𝑃𝑃" 𝑖𝑖𝑖𝑖 ≻ 𝑗𝑗 =
𝑠𝑠" 𝑖𝑖𝑖𝑖: 𝑗𝑗

𝑠𝑠" 𝑖𝑖𝑖𝑖: 𝑗𝑗 + 𝑠𝑠" 𝑗𝑗: 𝑖𝑖𝑖𝑖 	
  

Principal actor voting assessment: naïve or 
strategic;

Principal actor voting rule: binary, proportional, 
cubic, proportional-binary, proportional-cubic;

Third Party Commitment: full, semi, or none;

Third party voting assessment: naïve or 
strategic;

Third party voting rule: binary, proportional, cubic, 
proportional-binary, proportional-cubic; and

Probability: linear or square.

Fully Committed θ’i θ’j θ’k

ik≻ j θi θi θi

j≻ ik θj θj θj

i≻ jk θi θi θi

jk≻ i θj θj θj

Table 4.4 ‒ Fully Committed. Whichever side it allies with, it ends up having to adopt the position of the winning principal actor.
Source: KAPSARC

4.2.5 Third Party Voting
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4.3 Proposal 
Aside from the distance matrix dij , the machinery of 
bilateral negotiations described so far is applicable 
to both SMP and non-SMP models. However, the 
process of developing proposed bargains in the 
SMP is heavily reliant on the fact that the SMP 
uses vector positions in K-dimensional space, for 
which continuous interpolation between positions is 
possible.

The fundamental approach to developing proposals 
is to identify advantageous targets from i’s 
perspective, then estimate the result of bargaining 
between the two actors, given their differing 
perspectives and estimates. The fundamental tool 
for this is Nash Bargaining.

4.3.1 Nash Bargaining

John Nash (1953) presented a solution to the 
problem of bargaining between two agents. The 
essential result is that the expected bargain (B) 
maximizes the product of each actor’s improvement 
over a reference outcome (R), where both terms of 
the ‘Nash product’ (η) are non-negative:

(50)

Numerical optimization of η cannot actually use the 
simple product, because the product of two negative 
numbers is positive, so an optimization routine can 
achieve a large positive product by finding a position 
which is very bad for both actors. Therefore we use 
the simple product only in the quadrant where both 
terms are positive, employing a simple piecewise 
continuation over the other three quadrants that 
preserves continuity of values and slopes.

The Nash Bargaining Solution (NBS; Nash, 
1950) has been criticized on the grounds that it 

𝜂𝜂"#$ (𝐵𝐵|𝑅𝑅) = 𝑈𝑈"$ 𝐵𝐵 − 𝑈𝑈"$(𝑅𝑅) × 𝑈𝑈#$ 𝐵𝐵 − 𝑈𝑈#$(𝑅𝑅) 	
  

	
  

seems to be a static model, without the dynamic 
bargaining so often observed. A similar situation 
is the contrast between von Neumann’s Normal 
Form for representing a game and his Extensive 
Form (von Neumann and Morgenstern, 1944). The 
former is a matrix of strategic options, while the 
latter is a game tree of repeated moves and counter-
moves. However, they are in fact mathematically 
equivalent. Similarly, it has been repeatedly shown 
that variations of the Rubenstein (1982) model of 
repeated rounds of non co-operative bargaining 
between agents leads to the same NBS, given 
suitable U and R.

In negotiation theory, the reference outcome R is 
often termed the ‘Best Alternative to a Negotiated 
Outcome’, or BATNA. In our case, the alternative (or 
BATNA) to a negotiated bargain between i and j is 
the conflict i:j, the utility of which we have already 
analyzed.

However, it is important to draw the distinction 
between i’s estimate of the utilities, and j’s 
estimates.

Recall that i selected j so i expected to gain by the 
conflict and expected j to lose from the conflict. 
In symbols, this means the following inequality 
will always hold, because i deliberately chose j to 
maximize the difference:

𝑈𝑈"" 𝑖𝑖 → 𝑗𝑗	
   S > 𝑈𝑈""(𝑆𝑆)	
  

	
  

                   (51)

This almost always implies the converse inequality 
for i’s estimate of j’s utility:

𝑈𝑈"# 𝑖𝑖 → 𝑗𝑗	
   S < 𝑈𝑈"#(𝑆𝑆)	
  

	
  

                 (52)

Based on i’s estimate of these two utilities, i might 
form an estimate of the best bargain it could get:

(53)𝐵𝐵" = argmax
)

𝜂𝜂"+" (𝐵𝐵|𝑅𝑅)	
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KTAB Architecture: Formulae vs Submodels
KTAB itself has only top level formulae (such as adding up the votes in a coalition), with which the 
appropriately parameterized submodels are invoked. As just one consequence, there is no complete 
explicit formula in KTAB for the contribution of third parties, because parameterization enables dozens of 
submodels. Similarly, there is no formula in KTAB for the risk attitude of an actor, because it depends on 
the linear or square probability model, the naïve or strategic assessment, the range of R’s employed, the 
adjustment of R and so on. Similarly, there is no formula for the probability of an actor succeeding or of 
a third-party being on the winning side. Some of the parameterizations of some of the submodels have 
closed form descriptions but most do not and must be numerically calculated. Hence, the simplest and 
least error-prone approach is to write high level code to numerically calculate everything, with appropriate 
parameterization for the various submodels as specified above.

As mentioned earlier, KTAB is a toolkit for building models. We have discussed how parameterization can 
be used to construct hundreds of different SMP models, and how this leads to an architecture in which only 
the top level abstract formulae appear explicitly. This architecture is further necessitated by the desire to 
support non SMP models of bargaining, for example the negotiations among managers over how to match 
individual staff members with particular projects.

Note that i’s analysis takes into account its estimate 
of its own and j’s utility, but does not represent 
making unnecessary concessions; it merely 
represents an assessment of the most i could get in 
hard negotiation with a rational opponent, given the 
intrinsic bargaining advantage which i has by virtue 
of expecting to win a confrontation. That is to say, i 
knows he has a favorable BATNA and expects j to 
have a similar belief.

In the SMP, a bargain is taken to mean a pair of new 
positions, one for actor i and one for actor j. While 
it may work out that these are the same, we do not 
assume that they always will be.

To use a basic example, such a negotiation is 
represented by an armed robber’s demand for a 
victim’s wallet. The BATNA is that the victim loses 

both wallet and life, while the robber gets both wallet 
and a murder charge. Thus, it is usually the case 
that both sides are better off than the BATNA if 
the victim surrenders his wallet‒thus improving his 
outcome by staying alive‒and the robber refrains 
from shooting, thus improving his outcome by 
avoiding a murder charge.

However, these are only i’s estimates, which might 
or might not agree with j’s estimates:

1.	 j might expect the inequalities to be reversed, so 
that j thinks it has the upper hand. This can lead 
to conflict;

2.	 j might agree that i has the upper hand, but think 
that the advantage is less than i does, so that j 
wishes to give fewer concessions than i expects; 

4.3.1 Nash Bargaining
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3.	  j might agree that i has the upper hand, and 
think that the advantage is more than i does.

All these cases are subsumed in the problem of 
finding the NBS. The bargain expected is Bij:

 (54)

where

ηij (B) = (Ui(B) - Ui(R)) x (Uj(B) - Uj(R))        (55)

If both actors are risk averse to any degree, there 
will usually be a solution because a deterministic 
bargain enables both sides to collect their risk 
premiums, even if they have to make small 
concessions to do so.

Note that the NBS is calculated using each actor’s 
perspective on its own utility, so this represents 
not one actor’s personal estimate of what the other 
would do but the outcome of a two-sided negotiation 
between self interested actors. A modeler could 
choose to simulate the step-by-step two-sided 
negotiation, similar to the Rubenstein approach, but 
for efficiency we calculate the NBS directly.

To take the third case first, suppose i expects 
to gain 10 points and j expects to lose 20 in the 
BATNA: a conflict will emerge. In this case, the NBS 
would be roughly that j gives 15 points to i, so that 
both sides are better off by their own estimate than 
they would have been in the BATNA.

In the first and second cases, the existence 
and detailed structure of the NBS depend on 
complicated interactions between the saliences 
along different dimensions. It may happen that i 
expects to gain 0.2 points of utility while j expects 
to lose 0.1. In one dimension with risk neutral 
actors, no NBS exists because it is not possible 
for i to gain 0.2 or more from j while j gives up 

0.1 or less: j cannot move at least 0.2 toward i 
while simultaneously moving at most 0.1 toward i. 
However, if both actors are risk averse, then even 
in one dimension there may be enough of a risk 
premium to collect on both sides that a bargain 
exists. Similarly, in multiple dimensions, it may be 
possible for the actors to trade off gains and loses 
so that j gives to i what i values and j does not, and 
vice versa. This is similar to the situation of dividing 
vegetables and meat between a pure vegetarian 
and a pure carnivore: because they want different 
things, the goods can be divided up so that each 
gets everything they want.

KTAB offers two ways to do the bargaining.

1.	 The first is to literally carry out a numerical 
optimization in 2K dimensions to find the NBS. 
By using this method on thousands of problems, 
several patterns have been observed:

•	 When neither actor is risk seeking (both 
have 0 ≤ R), the NBS exists and is always 
symmetrical in that both actors adopt the 
same position.

•	 When one or both actors are risk seeking, 
an NBS may or may exist, and it may or may 
not be symmetrical. The more risk seeking 
the least risk tolerant actor is, the less likely 
it is that an NBS will exist. In other words, an 
NBS will usually exist even when one actor 
is highly risk seeking, so long as the other is 
fairly risk averse.

•	 When both actors are highly risk seeking, 
and have very similar salience vectors, an 
NBS is unlikely to exist.

•	 When neither actor is risk seeking, the 
NBS not only exists but is very closely 
approximated by a simple closed form 
formula. Remember that risk seeking 
behaviors are not expected among rational 
actors. 

Bij= arg max ηij (B) 
B

The Mathematics of Bilateral Negotiation
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2.	 The second method is to use a closed form 
formula for a weighted average along each 
dimension k of the bargain B. Notice that we 
use the formula Pi = P(i ≻  j) with no superscript 
h, and similarly for Pj. This indicates that i’s 
exertion of influence is calculated from i’s 
perspective, while j’s exertion is calculated 
from j’s perspective, as the final bargain 
emerges from the interaction of two actors, each 
bargaining from their own perspective.

(56)

As mentioned earlier, risk seeking behavior is never 
observed for significant stakes, so the second 
method is used in the example SMP application 
(with 0 ≤ R ≤ 1).

Notice that while the R values do not explicitly 
appear in the interpolation formula, they are folded 
into the P values. The willingness of actors to 
compromise is affected by their R values: the cost 
to the Blue actor of a 0.1 shift in Figure 4.1 is one-
tenth the cost to the Green actor, hence he will exert 
roughly one-tenth as much effort to resist it. Such a 
large difference in influence can shift the P values, 
particularly when every principal and third party 
have their own R values, and when they are all only 
partially adjusted from the principal actors’ R values.

If the interpolation formula for B gives a positive 
value for η(B), then the actors would find B mutually 
preferable to conflict. This results in sending 
‘bargaining proposals’: i’s proposal to j is that each 
adopt the same position, B.

If η(B) is negative, then the actors have no bargain 
that is mutually preferable to conflict. This results in 
sending ‘conflict proposals’: i’s proposal to j is that 
both adopt i’s position, while j’s proposal to i is that 
both adopt j’s position.

𝐵𝐵" =
𝑠𝑠%"𝑃𝑃% '𝜃𝜃%" + 𝑠𝑠*"𝑃𝑃*

'
𝜃𝜃*"

𝑠𝑠%"𝑃𝑃% ' + 𝑠𝑠*"𝑃𝑃*
' 	
  

	
  

4.4 Resolution
As mentioned earlier, every actor ends up with at 
least one and usually several bargains. Only one 
can actually occur; which one does is determined by 
the balance of influence, which in turn depends on 
the capabilities, utilities, and saliences of actors, i.e. 
on a PCE.

In this use of the PCE, the process being simulated 
is not one actor’s analysis of future possibilities 
but the outcome when the various actors actually 
do exert influence to promote or oppose different 
outcomes. When doing so, each of the modeled 
actors would use its own perspective in voting for or 
against each of the various options.

Again, the PCE for resolution can be parameterized 
in several ways. First, the actors can vote according 
to any of the five voting rules. Second, they can 
assess the state that would result from each 
potential bargain by uniform weights or by an 
embedded PCE, i.e. by naïve or strategic voting. For 
the demonstration smpc, we used the proportional 
voting rule with naïve voting.

4.5 Simulation Turns
One step of bilateral negotiation yields a new 
position for each actor, which defines the next state. 
The entire process can be repeated until some 
termination criterion is met, yielding a full simulation. 
Two stopping criteria are currently offered:

1.	 A fixed number of turns; or

2.	 Until all changes are small compared with those 
which occurred in the first turn.

When choosing between the stopping criteria, the 
analyst can pick any simulation length, with any 
number of turns. Despite the formal framework we 
have presented here, mapping turns to real world 

4.3.1 Nash Bargaining
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CDMPs is not straightforward. The exact length 
of time a turn represents is an abstraction. As 
suggested by the framework, a turn is any period 
of time during which all actors can exchange 
information and attempt to influence each other, 
through the four steps of assessment, targeting, 
proposal and resolution. There is a complicated 
and unresolved debate on how many turns are 
appropriate for a model like the SMP to run. 
Analysts will likely choose a number of iterations 

The Mathematics of Bilateral Negotiation

that balances the two major concerns: too short a 
simulation risks missing the value of an iterative 
CDMP model, while too long a simulation risks 
extending the results beyond what is credible based 
on a single dataset. By way of example, in Chinese 
SOE Reform we selected ten turns.

The final output from a run of smpc is a CSV 
record of the positions of each actor, as well as the 
probabilities for that state.
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