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Managing the closely interlinked water-energy-food nexus requires a holistic approach, as inefficient 
use of any of the three resources can have a negative effect on the other two. In countries with 
high rainfall, policy makers rarely need to worry about the nexus. But elsewhere, the effects are felt 
throughout the economy.

There is significant variance in the productivity of water for agriculture, and the energy required to 
extract that water, across countries. The most productive countries are typically those where the 
agriculture sectors rely on rainfall and surface water. Groundwater well depth, pump efficiency and the 
prevalence of desalination can affect the energy required to meet water demand for agriculture. 

Given uncontrollable factors like water scarcity, there may be limits to how much certain countries can 
improve their productivity of water for agriculture. The results of our study highlight the opportunity cost 
for some countries of engaging in certain types of domestic food production, and suggest efficiency 
gains could be achieved through crop switching and/or importing water intensive crops. 

Key Points
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Summary

Our findings highlight the opportunity cost for some 
countries of engaging in certain types of domestic 
food production, and suggest that efficiency gains 
could be achieved through crop switching and 
importing water intensive crops.  

The findings also suggest that there may be 
limits to how much the productivity of water can 
be increased in certain countries where water is 
extremely scarce. This gives further support for the 
potential benefits of virtual water trade. Our results 
suggest that productivity improvements are more 
easily achieved by emerging countries which have 
higher rainfall.  

This paper represents a first attempt at 
understanding the productivity of water and energy 
for agriculture across countries. The availability 
of more granular data on pump efficiencies, 
groundwater depths and water extraction would 
make the results more conclusive. Moving forward, 
countries must improve their data on how water is 
extracted for agriculture, as this will better determine 
the opportunity costs involved in growing certain 
crops domestically.  

Water, energy and food are inextricably 
linked and, consequently, inefficient use 
of any of the three resources can have 

a negative effect on the other two. Managing this 
nexus requires a holistic approach.

We compare the productivity of extracted water 
used for agriculture, and the energy required to 
withdraw that water, across countries. Agricultural 
productivity is measured from both an economic 
(contribution to GDP) and physical (metric tons 
produced) perspective. Our results offer insights 
into how water and energy are used by countries 
for agriculture production and what policies 
governments could consider for improving the 
sustainability of water resources. Specifically, our 
results suggest:

There is significant variance in the economic 
productivity of water for agriculture, and the 
energy required to extract that water, in the 
countries we studied.  

The relationship between total water use for 
agriculture and the energy required to withdraw 
water is loosely correlated. When a lack of 
correlation exists it is because of differences in 
groundwater well depths and/or differences in 
rainfall available for crop production. 

Physical productivity (sometimes referred 
to as ‘crop per drop’) divergences are even 
greater than economic divergences among the 
countries studied, particularly for crops that 
consume a lot of water. 
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Introduction

Water, energy and food are inextricably 
linked. Large quantities of water are used 
to produce hydroelectricity, cool power 

plants and refine petroleum products. Similarly, 
energy is a critical input for the extraction, treatment 
and transportation of water. Food relies heavily on 
both energy and water: an increase in the price 
of either can have an inflationary effect on food 
prices, while increases in agriculture production 
can strain water and energy resources. Because of 
the interconnectedness of water, energy and food, 
inefficient use in one sector can have a negative 
effect on the other two. 

There has been in-depth analysis on how water 
contributes to agricultural productivity. In 2003, 
Molden et al. suggested a framework for exploring 
the relationship between water and agricultural value 
added, using a partial factor productivity analysis – 
effectively looking at the value added of agriculture 
obtained from extracted water use, holding all 
other factors of production constant. This concept 
has been applied to numerous case studies, as 
summarized by Zwart and Bastiaanssen (2004). 
Their work assessed water productivity values for 
irrigated wheat, rice, cotton and maize in a variety of 
regions, based on a review of 84 literature sources.

By contrast, research on the water-energy-food 
nexus is still in its infancy. Recent studies have 
sought to describe this inter-relationship (Hellegers, 
P.J.G.J. et al. 2008; Bazilian et al. 2011; World 
Economic Forum 2011; Adnan, 2013) or offer broad 
policy recommendations on how to manage the 
sustainability of the components of this nexus 
(Bizikova, L. et al. 2013). Some detailed, quantitative 
studies on the nexus exist, but they are generally 
limited to specific regions such as Southern Spain, 
the Hindu Kush or the Aral Sea Basin (Soto-García 
et al. 2013; Rasul, 2014; Granit et al., 2012). 

Building on Molden’s framework, we compare the 
productivity of extracted water use for agriculture, 
and the energy required to withdraw that water, 
across countries. Our results offer insights into 
how water and energy are used by countries 
for agriculture production, and what policies 
governments could consider for improving the 
sustainability of their water resources.  

We define water productivity as the return on 
extracted water used in production, while energy- 
water productivity refers to the return on the energy 
used to extract and treat water. Return is calculated 
in two ways: physical and economic. Physical 
productivity assesses ‘crop per drop’ and ‘crop per 
kilowatt hour’, or the physical yield in the agricultural 
sector per unit of water or energy used. By contrast, 
economic productivity determines the ‘GDP per 
drop’ and ‘GDP per kWh’ in countries.

Understanding the energy component of water 
extracted is important for two reasons. First, supply 
constraints on energy can be a limiting factor 
for growth, particularly in the developing world. 
Countries that use significant energy resources 
for agriculture will have less energy available for 
other sectors of the economy. Second, countries 
that use water productively for agriculture may 
still require significant energy resources to extract 
that water, which could pose a question as to the 
efficacy of irrigation for agriculture. Incorporating 
an energy dimension into water productivity offers 
a unique perspective on the total burden water 
withdrawals place on the economies and natural 
resources of countries. In addition, understanding 
how energy use relates to water withdrawals for 
agriculture is of particular importance given that the 
agriculture sector consumes roughly 70 percent of 
water withdrawn globally (UN Food and Agriculture 
Organization, FAO Aquastat, 2014).   
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This paper is organized as follows: 

Section 1 describes the theoretical rationale 
(and limitations) for engaging in a partial factor 
productivity analysis for water and energy in 
agriculture. Section 2 explains the methodology for 
how water and energy use is estimated in countries. 
Section 3 describes the results of the partial factor 
productivity analysis for the sample of countries. 

Introduction

It should be noted that our intention was to make 
the countries analyzed inclusive, representing both 
rich and poor, water scarce and water abundant, 
and those with varying water and energy prices. 
However, the sample of countries was determined 
in part by data availability. Despite this limitation, 
our final sample of 41 countries offers a broad 
examination of diverse countries. Section 4 offers 
our conclusions and policy recommendations.   
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Calculating Water and Energy-water 
Productivity in Agriculture

Productivity is a measure of output per unit 
of input. In the aggregate, it represents the 
output reached from a combination of factors 

of production. To maximize productivity, there is a 
need to be both technically and allocatively efficient. 
Technical efficiency is achieved when producers 
create maximum output given a set of inputs, while 
allocative efficiency refers to combining the mix 
of production factors in such a way that economic 
returns are maximized.  

While calculating productivity demonstrates the 
limits of production that can be achieved from a set 
of inputs, decomposing the production function can 
be used to explain the relative importance of each 
factor of production to output. A single component’s 
contribution to output is its partial factor productivity. 
For example, the partial factor productivity of water 
(or energy-water) in agriculture is the agricultural 
output per unit of water (or energy-water) input. As 
previously noted, this can be calculated from an 
economic (GDP per input) or physical (crop per 
input) perspective. In essence, the productivity of 
a single factor offers the production possibilities for 
that factor given a certain technical efficiency, and 
holding all other factors of production constant.  

Although calculating partial factor productivity is a 
useful exercise, it is incomplete. This is because 
factors of production are substitutes and improving 
the productivity of one factor can lead to productivity 
reductions in another factor. For example, improving 
water productivity (i.e. reducing water use per unit of 
agriculture output) may require large expenditures 
in costly drip irrigation technologies. When this is 
the case, an improvement in water productivity may 
come at the expense of capital productivity and 

perhaps overall costs of production (i.e. total factor 
productivity).  

For a farmer, the decision to invest in drip irrigation 
can be represented as a function of the cost of the 
irrigation system and the cost savings from using 
less water and energy. If the irrigation system is 
more expensive to install and run than the cost 
savings delivered, the investment will not make 
economic sense.  Similarly, in cases where energy 
prices are low, it may make economic sense to 
avoid investing in energy saving technologies like 
efficient water pumps, as the cost savings from 
using less energy are not justified because of 
the higher purchase costs of the efficient pumps. 
The implications of substitution on total costs of 
production are the reason producers allocate 
resources based on total factor productivity, even if 
this means some factors of production are used less 
efficiently. 

Despite being incomplete for rationalizing decision 
making, calculating partial factor productivity of 
both water and energy for agriculture production is 
important for two reasons:

First, the prices of each input often do not 
reflect their opportunity costs or scarcity. As a 
result, they are overused in production and not 
always allocated to where the marginal benefit 
to society is the highest. For example, while 
using low cost water and energy excessively 
in production might maximize profitability for a 
farmer, the societal implications of this strategy 
could be negative if doing so were to result 
in scarce water and energy resources being 
diverted from more productive uses. 
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Second, water is best described as a common 
pool resource, meaning it is non-excludable but 
rivalrous. The lack of clear and/or enforceable 
property rights over common pool resources 
can result in their often being overexploited  
and depleted at the expense of future 
generations (Olstrom, 1990). Understanding 
whether or not water and energy are being 
productively used in agriculture is the first step 
in long-term management of these resources. 
This assessment is best achieved by a cross- 
country examination.     

In effect, discussions on water and energy-water 
productivity for agriculture are not unlike the 
debates on the productivity of land for agriculture 

that occurred after the Second World War (Brown, 
2004). At the time, a projected explosion of the 
globe’s population prompted a discussion on how 
to increase agricultural production while keeping 
food prices competitive and ensuring land was used 
sustainably. The resulting policy change was a mix 
of innovation, price controls and heavy investment 
that resulted in increases in world grain productivity 
from 1.1 tons per hectare in 1950 to 2.9 tons in 
2004 (Brown, 2004; Fisher, 2014). Following the 
same logic, we explore water and energy-water 
use in agriculture in a sample of countries with the 
objective of understanding how countries are using 
these resources, what drives allocation and where 
improvements can be made.  

Calculating Water and Energy-water Productivity in Agriculture
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Water and Energy-water Productivity: 
Methodology

To calculate water and energy-water 
productivity for agriculture, it is necessary 
first to know the total amount of water used in 

agriculture and the sources of that water. Compiling 
data from the FAO Aquastat Database, country 
national accounts, the Desal Database produced by 
consultants Global Water Intelligence, and academic 
literature, we estimate extracted water use for all 
agriculture in a sample of countries (see Figure 1 
for a sample of countries and all sources). Data are 
based on the latest year available.

While data exists for water withdrawals, attributing 
energy values to these withdrawals is a more 
complicated task. To do this, the different sources of 
water for agriculture (i.e. surface water, groundwater, 
advanced treated/desalinated water) and the 
physical energy costs of extraction and treatment 
in each country must be estimated. For example, 
a country that obtains a majority of its water for 
agriculture from the surface will use far less energy 
per cubic meter of water withdrawn than a country 
that obtains water from deep aquifers or desalinated 
water. Similarly, the hydraulic characteristics (e.g. 
efficiency, friction losses, drop point pressure of  
pumps used for extraction, or the type of desalination
technology used (membrane compared with thermal) 
may affect energy use.  

To estimate energy used for water extraction, we 
divide water into conventional and unconventional 
sources.  Conventional water refers to groundwater 
and surface water, both of which are untreated 
and sent directly from the source to the user. 
Unconventional water refers to seawater, brackish 
water and brine, all of which must be purified by 
water treatment technologies before consumption. 
It should be noted that we omitted energy for 
wastewater treatment and water transport, despite 
their importance from the analysis, for two reasons. 

First, energy data for both are scarce.  Second, 
neither wastewater nor large water transfers are 
used for agriculture on a large scale at the country 
level. Thus while, as a result, our findings may 
underestimate energy use, they incorporate the 
most significant sources of water for agriculture.    

The energy required to extract conventional 
groundwater is a function of three components: the 
depths of the groundwater bores, the efficiencies of 
pumps used for extraction, and flow rates. The term 
flow rates denotes the amount of water extracted 
from individual bores per unit of time. The relationship 
between these variables for calculating energy used 
for withdrawals is seen in the following equation, as 
described by Nelson and Robertson (2008): 

 

 

	  
ε
dleW
*=

where energy required for extraction ew is a 
function of the lift parameter, l (which represents the 
theoretical energy required to lift a volume of water 
vertically assuming no friction and perfect pump 
efficiency); the depth of the well, d; and the pump 
efficiency, ɛ.

Employing this relationship, we collect and analyze 
data on bore depths, pump efficiencies and flow 
rates for 41 countries. In each case, complete 
country data was not available, so energy intensity 
coefficients were estimated from the samples and 
aggregated to the national level. Pump efficiencies 
of 60 percent and 40 percent were then assumed 
for developed and developing countries respectively. 
In reality, it is likely that there is some variance in 
pump efficiency among developed and developing 
countries, which could alter energy use calculations.  
For example, Shah (2009) estimates that the 
efficiency of groundwater pumps in India is roughly 
40 percent, while transmission and distribution 
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losses from delivering power to pump sets can be 
of the order of 25 percent. By contrast, theoretical 
pump efficiencies in developed countries, where 
energy prices are higher and there is an incentive to 
invest in more efficient pumps, can be upwards of 85 
percent (Japikse, Marscher and Furst, 1997). 

Surface water sent directly to an end user was 
estimated to consume 0.034 kilowatt hours per 
cubic meter (kWh/cm) and 0.023 kWh/cm for 
developing and developed countries respectively. 
This was estimated in a manner similar to that used 
for groundwater. That figure was a function of a 40 
percent pump efficiency for developing countries 
and 60 percent for developed countries, with an 
assumed 5-meter lift for extraction.  

In the rare cases where some unconventional water 
is used for agriculture, as in Spain, Jordan, Bahrain, 
the United Arab Emirates (UAE) and Saudi Arabia, 
the energy required for withdrawals is a function 
of three factors: the type of water withdrawn, the 
quantity of water withdrawn and the desalination 
technology used. In terms of desalination technology 
two primary types exist: thermal and membrane. 
The energy required for thermal desalination 

processes such as multi-stage flash distillation 
(MSF) and multiple effect distillation (MED) is higher, 
and is generally independent of the water salinity. 
By contrast, the energy required for membrane 
technology, such as reverse osmosis (RO) and 
electrodialysis (ED), is generally less, and depends 
on the salinity of water.  

In addition to the specific technology used, 
other factors will affect the energy required for 
desalination, including the output capacity of 
the plant, thermal design, membrane type (for 
membrane technologies), the efficiency of the 
plant and system configuration. The latter is 
important to consider for dual-purpose plants (i.e. 
plants designed for power and water production). 
Since the study seeks only to calculate the energy 
required for water withdrawals, the energy inputs for 
cogeneration plants are decoupled, such that only 
the energy used for desalinating water is included 
when establishing physical energy intensity. Drawing 
on multiple databases and academic work, our 
study considered all of the factors above to estimate 
physical energy intensities (kWh/cm) for desalination 
plants in the sample countries. 

Water and Energy-water Productivity: Methodology
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Figure 1 shows results for 15 representative 
countries, while the results for all 41 countries 
are included in the Appendix. These lead us 

to two observations:

First, there is significant variance in both the water 
and energy-water productivity in the sample of 
countries. For example, the most water productive 
country in Figure 1 is Canada, with a ratio of 2.19. 
This means that for every one cubic meter of 
extracted water used for agriculture in Canada 
the total value added to agriculture production is 
equal to $2.19. (Money in this paper is stated in 
constant 2005 $ U.S.). By contrast, the least water 
productive country in the sample is Qatar, with 0.23, 
meaning for each cubic meter of extracted water 

used in agriculture the contribution to GDP is only 
$0.23. Canada’s energy-water productivity, which 
measures the total value added for every kilowatt 
hour of energy used to extract water for agriculture, 
is 47 compared with 0.50 for Qatar, which is also the 
least energy-water productive country in the sample. 
Given these differences, for Qatar to achieve the 
same GDP return as Canada from its agriculture, 
it must use 9.5 times the water and 94 times the 
energy to extract it. This should not be seen as 
a criticism so much as an acceptance that arid 
climates benefit less from rainfall and so a greater 
proportion of the water for their crops must come 
from extracted water. This inevitably leads to lower 
energy-water productivity.

Results and Analysis
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Second, the figure shows there is a loose correlation 
between water use and energy used for withdrawals.   
That is to say, while the relationship between water 
productivity and energy-water productivity is similar 
across most of the sample, some countries with 
similar levels of water productivity may have differing 
levels of energy-water productivity (and vice versa). 
For example, the United States and UAE share 
roughly the same water productivity at 0.74 and 0.76 
respectively. Despite similar uses in water per unit 
of agricultural value added, the UAE uses more than 
double the energy to obtain that water. Canadian 
productivity measures are higher than the U.S. 
because its agriculture is predominantly limited to 
regions that rely on rainfall alone for growing crops.

There are two limitations to calculating water and 
energy-water productivity from the perspective of 
total value added. First, agriculture production and 
prices are heterogeneous, meaning there is a large 
variance in the types of crops produced, and their 
prices, across the countries sampled. Countries 
that produce high value added crops, or operate 
in markets where prices are higher, may appear 
to be more productive, despite the fact that their 
aggregate production in terms of metric tons may 
be less. This point is of particular significance since 
developing economies as these may not be as 
concerned with the market value of their production 
as with the total quantity produced, since their  
focus is to feed a large population. Second, many 
countries buy agricultural products at guaranteed 
prices through a federally administered body. As a 
result, total value added calculations can sometimes 
be inflated by these practices. Given these limitations, 
it is useful to complement the economic productivity 
calculation with an analysis of physical productivity 
by measuring the metric tons (mt) of a crop 
produced per unit of water or energy used.
    
The comparison of physical productivity, shown 
in Figure 2, shows an even greater divergence 

in productivity among countries. For example, 
wheat is produced by every country in the sample, 
with the exception of Bahrain. The differences 
in productivity measured by crop per drop are 
extraordinary among the countries in the sample. 
Canada and Japan produce 199 and 204 mt of 
wheat respectively for each 1,000 cm of water 
extracted and used. By contrast, Australia produces 
roughly 57 mt of wheat per 1,000 cm of water used. 
And the three least productive countries, Oman, 
Saudi Arabia and Kuwait, produce only 0.52, 0.45, 
and 0.41 mt of wheat per 1,000 cm of extracted 
water used to produce it. It appears that it does not 
make economic sense to grow wheat in regions 
without rainfall because the value of the crop is 
low compared to the cost of the water that must be 
extracted in terms of energy and, in some cases, the 
financial cost of that energy.

In terms of energy, Canada produces 4,295 mt of 
wheat per megawatt hour (MWh) of energy used  
for the extraction of water, while Japan produces 
6,455 mt/MWh of wheat. The least productive nation 
from an energy perspective, Oman, produces only 
0.79 mt/MWh hour of energy used for the extraction 
of water.  

The primary factor that differentiates water 
productivity is rainfall. For Canada and Japan, 
only 0.4 percent of the water used to grow wheat 
comes from extracted surface or ground water. The 
remainder of the water needed for production comes 
from rainfall. By contrast, in Saudi Arabia, Qatar 
and Kuwait, 90 percent, 71 percent and 71 percent, 
respectively, of the water used to grow wheat comes 
from extracted water (Water Footprint, 2014). These 
large differences significantly affect the productivity 
levels of extracted water in the sample countries. 
In fact, when examining physical productivity in 
terms of total water used in production (i.e. the sum 
of extracted water and rainfall), the productivity of 

Results and Analysis
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Saudi Arabia becomes 0.4 mt per 1,000 cm of water 
used, which is much closer to Canada (0.75 mt), and 
the USA (0.5 mt).  

Similar relationships between physical production 
and extracted water are found in other agricultural 
production sectors including beef, chicken, potatoes, 
tomatoes, onions, and maize. In all cases, countries 
with crops benefiting from higher rainfall enjoy 
higher productivity levels from water extracted; 
and when rainwater is added to total water used in 
production the productivity levels in all countries 
become much more homogeneous. 

In addition to the total amount of extracted water 
required, there are two principal reasons for 

differences in energy-water productivity: whether the 
water extracted comes from the ground or surface; 
and the depths of groundwater bores. First, as noted 
earlier, while both the U.S. and UAE have similar 
water productivity levels, 60 percent of the water 
withdrawn for agriculture use in the U.S. comes 
from the surface, while only 7 percent of the water 
withdrawn for agriculture in the UAE comes from 
the surface. This difference contributes, in part, to 
the UAE having a lower energy-water productivity. 
Second, in terms of depths, while Mexico and Turkey 
obtain similar amounts of water for agriculture from 
the ground (35 percent and 27 percent respectively), 
the average depth of wells in Mexico is 74 meters 
(m) compared with 38 m in Turkey. This contributes 
to a lower energy-water productivity in Mexico. 
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Results and Analysis

While for wheat there was a large diversity in 
physical productivity across our sample, for other 
crops such as potatoes, the results are more 
harmonized among countries (see Figure 3).  
Compared with wheat, the productivity of water 
and energy for potatoes in many Gulf countries 
improves; while the water and energy productivity 
of India and China improve dramatically. In addition, 
there is a reduction of productivity in countries like 
Australia, Spain and Greece. The primary reason 
for the greater convergence is that potatoes require 

far less water than wheat. The global average water 
requirement to grow wheat and potatoes is 1,619 
cm/mt and 224 cm/mt respectively (Mekonnen 
and Hoekstra, 2011). This lower water requirement 
reduces the water and energy disparities between 
countries. The lower water requirement is a function 
of the different plant growing times: a potato plant’s 
lifespan ranges from 80 to 150 days from planting to 
maturity, while wheat requires roughly five months 
from the time it is planted until it can be harvested 
(GeoChemBio.com, 2014a; GeoChemBio.com, 2014b).  

0

2

20

200

2,000

20,000

0 2 20 200 2,000

En
er

gy
-w

at
er

 P
ro

du
ct

iv
ity

 (m
t/M

W
h)

Water Productivity (mt/1000 cm)

Australia

Brazil

Canada

China

Denmark

Egypt

France

Greece

India

Italy

Japan

JordanKuwait

Mexico

Norway

Oman

Pakistan

Portugal

Qatar

Russia

Saudi Arabia

Spain

UAE
USA

Figure 3. Metric tons (mt) of potatoes derived from unit of extracted water (and energy)

Source: KAPSARC analysis



15Energy for Water in Agriculture: A Partial Factor Productivity Analysis

Results and Analysis

Reliance on rain to support production of beef and 
chicken is much less variable, with each country 
relying more on rainfall and less on extracted water. 
For example, the country that relies most heavily on 
extracted water for chicken production is Bahrain, 
but the ratio of extracted water to rainfall is still 
only 27 percent.  Despite this, from an absolute 
perspective, Bahrain’s use of extracted water is 
still extremely high. The country uses 941 cm per 
metric ton of chicken produced. This means Bahrain 
is using 1.9 times as much water per metric ton of 
chicken as Saudi Arabia and over 26 times as much 

water as Denmark, which is the most efficient chicken 
producer from a water perspective (own calculations, 
data from Mekonnen and Hoekstra, 2012). 

When translated to energy, given that Bahrain’s 
water for agriculture comes primarily from deep 
underground aquifers, its energy-water productivity 
for chicken is only 2.58 mt/MWh used. This is higher 
than the figure for both Qatar (1.74 mt/MWh) and the 
United Arab Emirates (2.47 mt/MWh), but it is much 
lower than countries that rely more on rainfall and 
extracted surface water such as Norway (1,115.92 
mt/MWh) and Canada (414.45 mt/MWh).
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in some emerging countries, energy for water 
extraction can compete with energy for industrial 
development or the municipal sector.

The productivity ratios demonstrated here 
highlight the opportunity cost Gulf countries incur 
when engaging in certain types of domestic food 
production. High water use strains aquifers, likely 
at a cost to future generations, while high domestic 
energy consumption reduces the potential profits 
from energy exports. The stark differences in 
productivity between water scarce and water rich 
countries demonstrate the efficiency gains that could 
be achieved through greater trade in agriculture 
products. Where possible, our research suggests 
the Gulf States could benefit from importing crops 
that are highly water intensive.    

Finally, it is important to note that this paper 
represents a first attempt at understanding the 
water productivity and energy-water productivity for 
agriculture in a sample of countries. The precision 
of the results is limited by the availability of the 
data. More detailed data on pump efficiencies, 
groundwater depths and water extraction would 
make the results more robust. Moving forward, 
if countries improve their data on how water is 
extracted for agriculture, they will be better able to 
determine the opportunity costs of growing certain 
crops domestically.  

This paper offers insights into the productivity 
of water, and the energy required to withdraw 
that water, across a sample of countries. Our 

analysis shows that there is a wide divergence in 
both the energy and water productivity in our sample 
of countries, and indicates that countries with the 
highest levels of water and energy-water productivity 
are typically those that rely on rainfall and surface 
water for agriculture.

From a policy perspective, the findings are 
particularly relevant for both countries where water 
is scarce (namely the Gulf region) and for emerging 
economies. For the Gulf region, our findings 
suggest that there may be a limit to how much these 
countries can improve water and energy-water 
productivity for their agriculture. It is clear that the 
overall water productivity for wheat in Saudi Arabia 
becomes much closer to that of Canada and the 
United States when rainfall is included. Similar ratios 
exist for other Gulf States when rainfall is included 
in the productivity calculation. This suggests that 
in fact the Gulf countries are using their extracted 
water for agriculture productively – but, given their 
lack of rainfall, they require significantly more 
extracted water for production. As a result, the 
productivity of that water, and the energy required 
for extraction, is much lower. For emerging countries 
that enjoy higher rainfall, our results suggest that 
productivity improvements could more easily be 
achieved. This is particularly important given that, 

Conclusions and Policy Implications
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Appendix

Country Water productivity 
(total Agriculture, $/cm)

Energy-water Productivity 
(total Agriculture, $/kWh)

Argentina 0.62 2.6
Australia 1.31 21.6
Bahrain 0.30 0.7
Belgium 77.28 2158.0

Brazil 1.16 11.4
Canada 2.19 47.3
China 0.91 10.5

DR Congo 34.32 1170.8
Denmark 10.09 73.9

Egypt 0.25 2.6
Ethiopia 0.90 7.4
France 9.51 53.1

Germany 65.69 454.3
Greece 0.96 7.1

India 0.25 2.3
Indonesia 0.43 12.5

Italy 2.73 13.9
Japan 0.98 30.9
Jordan 0.58 1.2
Kenya 2.37 64.8
Kuwait 0.58 1.6
Mexico 0.48 2.4

Mozambique 2.98 44.0
Netherlands 49.47 411.7

Norway 5.08 223.4
Oman 0.52 0.8

Pakistan 0.14 1.0
Portugal 0.76 1.4

Qatar 0.23 0.5
Russia 2.44 76.4

Saudi Arabia 0.48 0.9
South Africa 0.98 2.9

Spain 1.69 10.0
Tanzania 1.11 26.8
Thailand 0.40 11.4
Turkey 1.59 16.9

UAE 0.76 1.8
Uganda 4.70 66.7

UK 9.16 137.4
USA 0.74 4.8

Uzbekistan 0.08 0.9
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