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	 We use an econometric model to generate scenario projections of CO2 emissions under different sets of 
assumptions on the underlying drivers. These drivers include GDP, energy prices, economic structure, 
and the underlying emissions trend (UET), which captures the combined effect of exogenous factors 
such as consumer behavior and energy efficiency.

	 Our baseline scenario projects that Saudi CO2 emissions will rise from 540 Mt in 2019 to 621 Mt in 2030 
and 878 Mt in 2060.

	 In addition to our baseline scenario, we generate CO2 emissions projections across 10 different 
scenarios, illustrating how each underlying driver, such as GDP, separately influences future CO2 
emissions in Saudi Arabia.

	 Given the emphasis that the Saudi nationally determined contribution (NDC) places on economic 
growth and development, we show that in a high-GDP-growth scenario, CO2 emissions would grow to 
635 Mt in 2030 and 985 Mt in 2060. In contrast, in a low-GDP-growth scenario, CO2 emissions would 
grow to 607 Mt in 2030 and 781 Mt in 2060.

	 Given the emphasis that the Saudi NDC also places on the economic structure, we show that in an 
economic diversification scenario, CO2 emissions would grow to 602 Mt in 2030 and 769 Mt in 2060. In 
contrast, in a heavy-industrialization scenario, CO2 emissions would grow to 646 Mt in 2030 and 1096 
Mt in 2060. The two scenarios differ by 46 Mt for 2030 and 327 Mt for 2060, underscoring the important 
impact of economic structure.

	 In our highest-emissions scenario, in which GDP grows fastest, the economy becomes more heavily 
industrialized, and energy prices decline in real terms, CO2 emissions grow to 666 Mt in 2030 and 
1,391 Mt by 2060. On the other hand, in our lowest-emissions scenario, in which GDP grows slowest, 
energy prices are reformed, and the economy diversifies, CO2 emissions decline to 516 Mt in 2030 
and 465 Mt by 2060. Even in the latter scenario, further efforts would be needed to meet the net-zero 
objective.

Key Points
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Summary

As a party to the Paris Agreement, which 
aims to limit the global average temperature 
rise to below 2 degrees and keep it as close 

as possible to 1.5 degrees Celsius, Saudi Arabia 
has submitted its nationally determined contribution 
(NDC). NDCs are essentially climate action plans 
that encompass a party’s climate target and the 
initiatives or policies that it plans to implement to 
achieve that target. NDCs lie “at the heart of the 
Paris Agreement” and are submitted at 5-year 
intervals, with each successive NDC (referred to as 
either a new or an updated NDC) reflecting higher 
ambition. Saudi Arabia has thus far participated 
in two successive rounds of NDC submissions. In 
its most recent updated NDC, submitted in 2021, 
Saudi Arabia announced its new pledge to reduce 
greenhouse gas (GHG) emissions by 278 million 
tons (Mt) of carbon dioxide (CO2) equivalent (eq) 
annually by 2030.

Saudi Arabia’s NDC emission target is expressed as 
a reduction below a baseline or business-as-usual 
emissions growth scenario. A country’s baseline is 
a counterfactual scenario that shows how emissions 
would evolve under the assumption that “no 
mitigation policies or measures will be implemented 
beyond those that are already in force and/or are 
legislated or planned to be adopted”. Although Saudi 
Arabia has not yet publicly disclosed a quantitative 
baseline in its NDC, it has provided qualitative 
details on its baseline, which it refers to as “dynamic 
baselines”. Saudi Arabia’s dynamic baselines 
depend on the level of economic development and 
the extent of economic diversification that occurs 
in the country over the coming years. Specifically, 
Saudi Arabia has envisioned two distinct but 
possible baseline scenarios. In the first, which 
is taken to be the default scenario, Saudi Arabia 
achieves economic diversification, driven by its 
oil exports, with oil export revenues “channeled 
into investments in high value-added sectors such 

as financial services” and tourism. In the second 
scenario, oil resources are utilized domestically 
to expand Saudi Arabia’s energy-intensive 
industrial base, with increasing contributions 
of “petrochemical, cement, mining, and metal 
production industries to the national economy.”

This paper contributes to the understanding 
of how emissions may evolve in Saudi Arabia 
through 2030 and up to 2060 by producing various 
dynamic emissions scenarios. These include a 
baseline emissions scenario, demonstrating how 
different variables, such as gross domestic product 
(GDP), energy prices, and economic structure, 
influence the evolution of CO2 emissions in Saudi 
Arabia. We focus on CO2 emissions only, which 
account for approximately 80%–90% of total GHG 
emissions in Saudi Arabia. We generate our 
CO2 emissions projections using econometric 
methods. Specifically, we estimate equations 
using Autometrics and the structural time series 
model (STSM), two methods that can explain 
emissions data through a combination of trends, 
interventions1, and right-hand-side variables such 
as GDP and energy prices.

Using both methods, we estimate multiple equations 
that include different right-hand-side variables. Our 
econometric results reveal that the coefficients 
on variables such as GDP and energy prices are 
consistent across the estimated equations, which 
indicates the robustness of the estimates. To 
generate the CO2 emissions projections across 
the different scenarios, we settle on a preferred 
equation that passes all diagnostic tests and is most 
useful in terms of the number of policy scenarios 
that it allows us to run.

Before using our preferred econometric model 
to generate projections, we build scenarios that 
reflect different assumptions on the underlying 
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drivers of CO2 emissions. These drivers include 
GDP, energy prices, economic structure, and the 
underlying emissions trend (UET), which captures 
the combined effect of exogenous factors such as 
consumer behavior and energy efficiency. We build 
11 scenarios, including the baseline scenario that 
acts as a reference, showing how CO2 emissions 
might evolve in Saudi Arabia without any additional 
policy efforts under the assumption that the 
underlying drivers continue to evolve in the future 
as they did in the past. We generate our baseline 
CO2 emissions projection by plugging the baseline 
assumptions on the evolution of drivers such as 
GDP into our preferred econometric model. In our 
baseline, Saudi CO2 emissions would rise from 
540 Mt in 2019 to 621 Mt in 2030 and 878 Mt in 
2060.

Our CO2 emissions scenarios highlight how different 
factors affect CO2 emissions in Saudi Arabia up 
to 2060. The gap between the highest-emissions 
and lowest-emissions projections underscores how 
differently emissions could evolve depending on 
the underlying drivers. In the highest-emissions 
scenario, GDP grows fastest, the economy becomes 
more heavily industrialized, energy prices decline in 
real terms, UET grows more steeply upward sloping, 
and CO2 emissions grow to 666 Mt in 2030 and 
1,391 Mt by 2060. On the other hand, in the lowest-
emissions scenario, in which GDP grows slowest, 
energy prices are reformed, the economy diversifies, 
and the UET becomes more steeply downward 
sloping, CO2 emissions decline to 516 Mt in 2030 
and 465 Mt by 2060.

In addition to the highest- and lowest-emissions 
scenarios, we highlight how the underlying drivers 
can separately influence CO2 emissions. Given the 
emphasis that the Saudi NDC placed on economic 
structure and development, we highlight how these 
two variables separately influence CO2 emission 

trajectories. In the case of economic structure, we 
show that under a low services share scenario, in 
which manufacturing grows rapidly to contribute 
40% to GDP by 2060 while the services sector 
grows slowly to 49% only, CO2 emissions would 
grow to 646 Mt in 2030 and 1,096 Mt in 2060. This 
low-services-share scenario is aligned with the 
heavy-industrialization scenario presented in Saudi 
Arabia’s NDC as one of its dynamic baselines. In 
contrast, under the high-services-share scenario, 
in which services grow to contribute 75% of GDP 
by 2060, CO2 emissions would grow to 602 Mt 
in 2030 and 769 Mt in 2060. This high-services 
scenario is aligned with the economic diversification 
scenario presented in Saudi Arabia’s NDC. The two 
scenarios differ by 46 Mt for 2030 and 327 Mt for 
2060, underscoring the impact of GDP composition 
on CO2 emission projections. Similarly, we show 
that in a high-GDP-growth scenario, CO2 emissions 
would grow to 635 Mt in 2030 and 985 Mt in 
2060, while in a low-GDP-growth scenario, CO2 
emissions would grow to 607 Mt in 2030 and 781 
Mt in 2060. These results reveal why the Saudi 
government emphasized both economic structure 
and development in its updated NDC.

In short, our paper generates several key insights 
for policymakers. First, it highlights how different 
variables, such as GDP and energy prices, influence 
CO2 emissions projections. Second, it reveals the 
critical role that the economic structure can play, 
especially in a country undergoing rapid economic 
transformations such as Saudi Arabia. Third, it 
demonstrates that even in the lowest-emissions 
scenario, further efforts are needed to achieve 
net zero by 2060. These efforts could encompass 
policies such as carbon pricing and investment 
in carbon-removal technologies such as direct air 
capture. These additional efforts will be necessary for 
the Kingdom of Saudi Arabia to achieve its goals of 
reaching net zero and securing a sustainable future.

Summary



6Projecting Saudi Arabia’s CO2 Dynamic Baselines to 2060: A Multivariate Approach

As a party to the Paris Agreement, which 
aims to limit the global average temperature 
rise to below 2 degrees and keep it as 

close as possible to 1.5 degrees Celsius (Paris 
Agreement, 2015), Saudi Arabia has submitted a 
nationally determined contribution (NDC). NDCs are 
essentially climate action plans that encompass a 
party’s climate target and the initiatives or policies 
that it plans to implement to achieve that target. 
NDCs lie “at the heart of the Paris Agreement” 
and are submitted at 5-year intervals, with each 
successive NDC (referred to as either a new 
or an updated NDC) reflecting higher ambition 
(UNFCCC, 2022).

Saudi Arabia has thus far participated in two 
successive rounds of NDC submissions. In its 
first NDC, Saudi Arabia pledged to reduce its 
greenhouse gas (GHG) emissions by 130 million 
tons (Mt) of carbon dioxide equivalent (CO2eq) 
annually by 2030 (Kingdom of Saudi Arabia, 2015, 
p. 1). In its updated NDC, Saudi Arabia more than 
doubled its previous goal, announcing its new 
pledge to reduce GHG emissions by 278 Mt CO2eq 
annually by 2030 (Kingdom of Saudi Arabia, 2021, 
p. 2). Saudi Arabia has also recently announced 
its ambition to achieve net zero by 2060 (Arab 
News, 2021).

Saudi Arabia’s NDC emission target is expressed 
as a reduction below a baseline or business-as-
usual emissions growth scenario. Vaidyula and 
Hood (2018) refer to such scenarios as baseline 
projections, which many developing countries 
appear to prefer. In contrast, other countries, 
especially developed countries, appear to prefer 
what are commonly known as absolute targets, 
which are expressed as a reduction below the 
emissions level in a specified historical base 
year. According to the United Nations Framework 
Convention on Climate Change’s (UNFCCC’s) (2021) 

NDC Synthesis Report, in 2021, 53% of updated 
NDCs contained absolute emission reduction 
targets, 38% contained baseline targets, and 9% 
contained a different type of target.

A country’s baseline or business-as-usual scenario 
is a counterfactual scenario showing how emissions 
would evolve under the assumption that “no 
mitigation policies or measures will be implemented 
beyond those already in force and/or are legislated 
or planned to be adopted” (IPCC, 2022). In its definition 
of baseline scenarios, the IPCC (2022) adds that 
baseline scenarios are “not intended to be predictions 
of the future, but rather counterfactual constructions 
that can serve to highlight the level of emissions that 
would occur without further policy effort.”

Some parties have not yet publicly released 
quantitative information about their baselines in 
their NDCs (UNFCCC, 2021). However, most have 
provided qualitative information about the key 
assumptions, variables, or parameters that their 
baseline scenarios depend on. For example, gross 
domestic product (GDP) appears to be a common 
key variable in most parties’ baseline scenarios, as 
different economic growth rates will lead to different 
emissions growth scenarios.

The lack of quantitative baselines may stem from 
the difficulties of constructing baseline scenarios. As 
noted by Vaidyula and Hood (2018), many variables 
can influence a country’s baseline scenario for 
CO2 emissions, such as GDP, economic structure, 
energy consumption patterns, the energy mix, 
and the energy price. Furthermore, the choice of 
method used to project baseline emissions can 
significantly influence their trajectory. Given these 
uncertainties, some parties to the Paris Agreement 
have released the specific modeling tools that they 
used to estimate their baseline or business-as-usual 
emissions scenarios (UNFCCC, 2021).

Introduction
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Although Saudi Arabia is one of the countries 
that has not yet publicly disclosed a quantitative 
baseline in its NDC, it has provided qualitative 
details on its baseline, which it refers to as “dynamic 
baselines” (Kingdom of Saudi Arabia, 2021, p. 3). 
Saudi Arabia’s dynamic baselines depend on the 
level of economic development and the extent of 
economic diversification occurring in the country 
over the coming years. Specifically, Saudi Arabia 
has envisioned two distinct but plausible baseline 
scenarios. In the first, which is taken as the 
default scenario, Saudi Arabia achieves economic 
diversification, driven by its oil exports, with oil 
export revenues “channeled into investments in high 
value-added sectors such as financial services” 
and tourism. In the second scenario, oil resources 
are utilized domestically to expand Saudi Arabia’s 
energy-intensive industrial base, with increasing 
contributions of “petrochemical, cement, mining, 
and metal production industries to the national 
economy.” In its updated NDC, the Kingdom of Saudi 
Arabia (2021, p.4) states that the “main difference 
between the two baseline scenarios is the allocation 
of hydrocarbons produced for either domestic 
consumption or export.” These two different scenarios 
appear to influence future emissions by influencing the 
future economic structure.

The structure of the Saudi economy is expected 
to play a key role in the evolution of Saudi Arabia’s 
GHG emissions. The Saudi economy is poised 
to change dramatically in the future, following 
the launch of structural reforms in 2016 that aim 
to set the Kingdom on a path toward economic 
diversification (Saudi Vision 2030). For example, 
the country has been reforming its energy prices 
under its Fiscal Balance Program, which will reduce 
demand for energy and emissions and encourage 
the growth of less emission-intensive industries 
(Fiscal Balance Program, 2019). The government 
has also commissioned the Public Investment 

Fund, its sovereign wealth fund, to invest in services 
sectors, such as tourism and nonoil industrial sectors 
(Public Investment Fund 2018). Tourism is a relatively 
small sector in Saudi Arabia today. However, major 
development projects, dubbed giga-projects, are 
expected to transform the sector in the near future 
(PIF GIGA PROJECTS, 2018). Further reforms 
and progress across multiple national programs 
are expected to significantly affect Saudi Arabia’s 
economic structure and, therefore, its emissions.

This paper contributes to the understanding of how 
emissions may evolve in Saudi Arabia through 
2030 and up to 2060 by producing various dynamic 
emissions scenarios, including a baseline emissions 
scenario, demonstrating how different variables, 
such as GDP, energy prices, and economic 
structure, influence the evolution of CO2 emissions 
in Saudi Arabia. We focus on CO2 emissions only, 
which account for approximately 80%–90% of total 
GHG emissions in Saudi Arabia. We construct 
our CO2 emissions scenarios using econometric 
methods. Specifically, we estimate equations using 
both Autometrics and the structural time series 
model (STSM), two methods that can explain 
emissions data through a combination of trends, 
interventions, and right-hand-side variables such as 
GDP and energy prices.

Our preferred econometric equation shows that 
CO2 emissions in Saudi Arabia would grow to 621 
MtCO2eq by 2030 and 878 MtCO2eq by 2060 in our 
central business-as-usual baseline scenario. In line 
with Saudi Arabia’s NDC, we illustrate the impact 
of economic structure on Saudi Arabia’s baseline 
emissions. Our increasing-economic-diversification 
and increasing-heavy-industrialization scenarios differ 
by 43 MtCO2eq in 2030 and 328 MtCO2eq in 2060, 
highlighting the potentially critical role of economic 
diversification paths, especially in the long term. 
Furthermore, we construct upper- and lower-bound  

Introduction
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scenarios in which emissions rise to 1,391 MtCO2eq 
versus 465 MtCO2eq in 2060, respectively, 
underscoring the large, combined impact that 
variables such as GDP, energy prices, economic 
structure, and energy efficiency and behavioral 
change can have on CO2 emissions in Saudi Arabia.

Methodologies and Data

To reveal the relationships between CO2 emissions 
and their potential drivers, we use the STSM 

approach (Harvey, 1989) and the general-to-specific 
modeling (Gets) approach (see Hendry and Doornik, 
2014, inter alia). The details of the methods and 
techniques used are provided in Appendix A2.

Table 1 below reports summary statistics of the data 
used in estimations. Co2 is total CO2 emissions, gdp 
stands for gross domestic product, p is the average 
energy price, and srv_sh represents the share 
of services in GDP. Details and sources on the 
mentioned variables can be found in Appendix A2.2.

Introduction

Table 1. Summary statistics.

(1) (2) (3) (4) (5)

Variables N Mean SD Min Max

CO2 36 5.671 0.468 4.897 6.357

GDP 36 14.25 0.358 13.56 14.79

p 36 6.509 0.339 5.802 7.117

srv_sh 36 0.666 0.0143 0.643 0.706

Source: GaStat, Enerdata, and Authors’ Calculation.
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Estimated Econometric Model for 
Projections

Full details of the estimation and choice of 
equation used to underpin the scenarios are given 
in the appendix. In brief, the preferred equation 
relates the natural logarithm of CO2 emissions 
(denoted by co2t

) in year t to the natural logarithm 
of GDP (gdpt), the lag of the natural logarithm 
of GDP (gdpt–1), the natural logarithm of the real 
energy price (pt), and the share of services in 
nonoil GDP (SRV_SHt). This is estimated by STSM 
and is given by:

co2! t
=γ̂t +0.1694

*** gdpt +0.1461
*** gdpt−1 −0.1174

***pt −1.2455
***SRV _SHt	

co2! t
=γ̂t +0.1694

*** gdpt +0.1461
*** gdpt−1 −0.1174

***pt −1.2455
***SRV _SHt

� (1a)

with the estimated UET (^γt, shown in Fig. 1) given by:

γ̂t = µ̂t −0.0594
*** Irr1988 −0.0798

***Lvl1994 +0.0307
** Irr2002 −0.0327

*** Irr2007 +0.0435
*** Irr2010+0.0309

** Irr2012 −0.0346
***Slp2016

γ̂t = µ̂t −0.0594
*** Irr1988 −0.0798

***Lvl1994 +0.0307
** Irr2002 −0.0327

*** Irr2007 +0.0435
*** Irr2010+0.0309

** Irr2012 −0.0346
***Slp2016

γ̂t = µ̂t −0.0594
*** Irr1988 −0.0798

***Lvl1994 +0.0307
** Irr2002 −0.0327

*** Irr2007 +0.0435
*** Irr2010+0.0309

** Irr2012 −0.0346
***Slp2016 � (1b)

where lrrt represents an irregular (or outlier) 
intervention, Lvlt represents a level intervention, 
and Slpt represents a slope intervention, all 
at time t; *, **, and *** represent coefficients 
significant at the 10%, 5%, and 1% levels, 
respectively; and  ^mt represents the estimated  
level component of the trend.

The estimated equation suggests that in the long 
run, a one percent increase in GDP would increase 
CO2 emissions by 0.32%. A 1% increase in the real 

Results and Scenarios

Figure 1. Estimated UET ( ^γt) for the preferred model.

Source: Estimation results.
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energy price would reduce CO2 emissions by 0.12%, 
and a one-percentage-point increase in the share of 
services value added in nonoil GDP would reduce 
CO2 emissions by 1.25%. Furthermore, the estimated 
UET at the end of the estimation period (and 
therefore within the baseline projection) suggests 
that with GDP, the real energy price, and the share of 
services value added in nonoil GDP held constant, 
there would be an autonomous increase in CO2 
emissions of 0.45% per annum – which comes from 
an estimated underlying slope increase of 3.91% 
per annum but tempered by the break in the slope in 
2016 (i.e., the estimated slope intervention in 2016) 
of 3.46% per annum. It is worth noting that the UET 
captures the combined effect of exogenous factors 
on CO2 emissions. These exogenous factors include 
changes in environmental regulations, increased 
environmental awareness, cultural changes, changes 
in tastes and behavior, and improvements in 
energy efficiency. The literature finds evidence that 
developing countries historically have an upward-
sloping trend. For example, Javid and Khan (2020) 
find an increasing slope of the emission trend in 
China and India and suggest that the bulk of these 
countries’ energy-saving behavior (80%–90%) has 
not been accounted for. The underlying energy 
demand trend is also historically upward sloping for 
Saudi Arabia; see Aldubayan and Gassim (2020) for 
further details.

Scenario Construction

We build multiple scenarios to consider the 
alternate pathways that CO2 emissions in Saudi 
Arabia might follow over the coming decades. This 
section introduces the scenario construction and 
rationale regarding the assumptions pertaining 
to the underlying drivers of the CO2 emissions 
projections up to 2060, which include GDP growth, 
GDP composition (i.e., economic structure), energy 
prices, and other exogenous factors. For each 

underlying driver, we construct low, central, and high 
projection scenarios.

Initial Saudi GDP projections are obtained from 
the Oxford Economics model (OEM, 2022), which 
predicts that the Saudi economy’s real growth will 
average 1.2% per year up to 2060. This implies that 
the Saudi economy will grow by 63% by 2060. The 
OEM’s real GDP annual growth rate projection is 
designated as our low-GDP scenario, given that its 
predicted average growth rate is significantly lower 
than the historical average growth rate in Saudi 
Arabia over the last decade. For our central-GDP 
scenario, we increase the OEM GDP annual growth 
rate projection by a modest 1% to allow for a growth 
rate that more closely reflects the historical growth 
rate of the Saudi economy. Since this central-GDP 
scenario reflects the historical data more closely, 
we set it as our baseline GDP projection. Under 
this scenario, the economy would double in size 
by 2060. Finally, for our high-GDP scenario, we 
increase the GDP annual growth rate projection 
by another 1% over the baseline to construct an 
optimistic economic growth scenario, under which 
the Saudi economy would triple in size by 2060.

Our low-energy-price scenario assumes that 
energy prices remain fixed nominally and thus 
decline in real terms up to 2060. We set this as 
our baseline scenario, as it extends the historical 
trend of fixed nominal energy prices since 2018. 
In our central-energy-price scenario, we assume 
that energy prices remain fixed in real terms up 
to 2060. This central scenario would see nominal 
energy prices grow 2% per annum during the 
2023–2060 period. Finally, our high-energy-price 
scenario reflects a wave of energy price reform 
in 2023, in which nominal energy prices increase 
significantly, followed by gradual increases in 
nominal energy prices up to 2030 (at 5% per year). 
This scenario picks up a recent announcement of 

Results and Scenarios
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price changes in Saudi Arabia (Arab News, 2022). 
This announcement stated that by the fourth quarter 
of 2023, the government will implement price 
adjustments for natural gas, Arab heavy crude oil, 
ethane, heavy fuel oil, and Arab light crude oil. In 
addition, the government will review these prices 
annually up to 2030. From 2030 onward, in our 
high-energy-price scenario, we assume that energy 
prices remain fixed in real terms up to 2060, keeping 
in line with inflation.

The structure or composition of the Saudi economy 
is another key driver of CO2 emissions and was 
mentioned explicitly in Saudi Arabia’s NDC. As 
noted previously, Saudi Arabia’s NDC described 
two dynamic baselines, one that reflects heavy 
industrialization and another that reflects economic 
diversification and a transition toward services. We 
design our low, central, and high scenarios from the 
perspective of the share of services. Our central-
services-share scenario assumes that the service 
sector will gradually grow to 62% of the Saudi 
economy by 2060, with manufacturing accounting 
for 22% by 2060. This is designated the baseline 
scenario, as it extends the observed historical 
trends in the composition of the Saudi economy 
(GaSTAT, 2020). Our low-services-share scenario, 
or heavy-industrialization scenario, sees the share 
of services grow slowly to 49% by 2060, while 
the share of manufacturing grows rapidly to 40% 
by 2060. In our high-services-share scenario, the 
services share grows to 75% of the Saudi economy 
by 2060, in line with the trend in several developed 
economies, while the manufacturing share declines 
to 14% by 2060 (Herrendorf, Rogerson, and 
Valentinyi 2013).

Last, we design different scenarios of how 
exogenous factors might affect CO2 emissions 
moving forward. As discussed previously, the UET 
captures the combined effect of exogenous factors 
on CO2 emissions. These exogenous factors 

include changes in environmental regulations, 
increased environmental awareness, cultural 
changes, changes in tastes and behavior, and 
improvements in energy efficiency. Our central 
baseline projections extend the UET into the future 
based on its last observed slope value. (This is the 
default approach used in STSM forecasting.) In our 
central-UET scenario, the trend causes a negligible 
increase in CO2 emissions up to 2060. Our high-
UET scenario, an unlikely scenario, assumes a 
change in these exogenous factors that makes the 
UET more steeply upward sloping. We construct 
this high-UET scenario by increasing the slope 
component of the UET by 0.00015 annually. In 
contrast, our low-UET scenario assumes changes in 
the exogenous factors, such as rapid improvements 
in energy efficiency, that would make the UET more 
steeply downward sloping and, therefore, emission 
decreasing. We construct this low-UET scenario 
by decreasing the slope component of the UET by 
0.00015 per year. The impact of the UET on CO2 
emissions is a compelling reminder for policymakers 
that there are other factors beyond conventional 
economic drivers that can have a significant impact 
on CO2 emissions.

Baseline Projection

Before considering the other scenarios, we present 
our baseline scenario projection, which acts as 
a reference, showing how CO2 emissions might 
evolve without any additional policy efforts should 
the underlying drivers continue to evolve in the 
future as they did in the past. Our baseline scenario 
rests on assumptions about how GDP, energy 
prices, the services share, and other exogenous 
factors captured by the UET evolve until 2060. 
Our baseline scenario assumptions, described 
previously, essentially extend past historical trends 
into the future. By plugging these assumptions into 
our preferred econometric model, we generate our 

Results and Scenarios
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baseline scenario, which is presented in Fig. 2. Our 
baseline scenario projection suggests that Saudi 
CO2 emissions would rise from 540 Mt in 2019 to 
621 Mt in 2030 and 878 Mt in 2060. Also included 
in Fig. 2 as a benchmark is a previous baseline 
projection based on a univariate modeling approach 
from Gasim et al. (2022). Our baseline projection in 
this paper is not dissimilar to Gasim et al.’s (2022) 
projection and is within the statistical confidence 
interval of their baseline projection shown in Fig. 2.

Scenario Projections

In addition to the baseline, it is important to 
showcase how different pathways of economic 
growth, economic diversification, and energy 
price and energy efficiency changes, among other 

factors, influence future CO2 emissions in Saudi 
Arabia. Table 2 lists the different assumptions 
on the underlying drivers and highlights the CO2 
emissions projections generated under each 
scenario by plugging those assumptions into 
the preferred econometric model. As presented 
previously, our baseline scenario yields a CO2 
emissions projection of 621 Mt in 2030 and 
878 Mt in 2060.

Increasing the GDP growth rates while keeping all 
other underlying drivers fixed at their baseline values 
leads to a CO2 emissions projection that rises to 635 
Mt in the high-GDP scenario. In contrast, decreasing 
the GDP growth rates yields a projection that rises 
to only 607 Mt by 2030. Although the gap between 
the low- and high-GDP scenarios is fairly small in 

Figure 2. CO2 baseline projection.

Source: Gasim et al. (2022).

Results and Scenarios
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2030 (28 Mt), the gap grows to 204 Mt by 2060, the 
year in which the net-zero objective is targeted to be 
achieved.

Increasing energy prices above their level in the 
low-energy-price scenario, which is designated 
as the baseline, leads to scenarios with lower 
CO2 emissions. If we assume flat energy prices 
in real terms (the central-energy-prices scenario), 
CO2 emissions will grow to 611 Mt by 2030, 
approximately 10 Mt below the baseline scenario 
value in 2030. With the implementation of energy 
price reforms under the high-energy-prices scenario, 
CO2 emissions in 2030 will grow to only 564 Mt, 
which is almost 60 Mt lower than the baseline, 
highlighting the large potential impact of energy 
price reform, even in the near term. In the long term, 
the gap between the high-energy-prices scenario 
and the low-energy-prices scenario (i.e., the 
baseline) becomes 134 Mt.

The composition of GDP, as captured by the 
services share, has a significant impact on 
CO2 emissions. Under the low-services-share 
scenario, manufacturing grows rapidly to 40% 
by 2060, while the services sector grows slowly 
to 49% only, yielding CO2 emissions of 646 Mt 
in 2030 and 1,096 Mt in 2060. The low-services-
share scenario presented here is aligned with 
the heavy-industrialization scenario presented 
in Saudi Arabia’s NDC as one of its dynamic 
baselines. In contrast, if the services sector 
were to grow to 75% of GDP by 2060, emissions 
would be 602 Mt (46 Mt less than in the 
heavy-industrialization scenario) in 2030 and 
769 Mt in 2060 (327 Mt less than in the heavy-
industrialization scenario). The high-services-
share scenario presented here is aligned 
with the economic diversification scenario 
presented in Saudi Arabia’s NDC as one of its 

dynamic baselines. In summary, our findings 
underscore the impact of GDP composition on 
CO2 emission projections, revealing why the 
Saudi government emphasized this factor in its 
updated NDC.

The UET, which captures the combined impact 
of multiple exogenous factors, is varied to reveal 
how these exogenous factors could influence CO2 
emission projections. In the low-UET scenario 
(a steeper downward-sloping UET), which may 
capture accelerated improvements in energy 
efficiency and changes in behavior that reduce 
emissions, CO2 emissions grow to 616 Mt in 2030 
and 776 Mt in 2060. In the high-UET scenario 
(a steeper upward-sloping UET), CO2 emissions 
grow to 626 Mt in 2030 and 992 Mt in 2060. Our 
findings reveal that beyond the economic factors 
considered previously, other factors could play 
a large role in influencing the evolution of CO2 
emissions in Saudi Arabia.

Finally, we introduce our highest-emission and 
lowest-emission scenarios, which reflect the 
combination of assumptions on each underlying 
driver that yields the highest and lowest CO2 
emissions projections, respectively. Under 
the highest-emission scenario, GDP grows 
fastest, the economy becomes more heavily 
industrialized, energy prices decline in real 
terms, and the UET grows more upward sloping. 
With this combination of assumptions, CO2 
emissions would grow to 666 Mt in 2030 and 
1,391 Mt by 2060. On the other hand, under 
our lowest-emission scenario, GDP grows 
slowest, energy prices are reformed, the economy 
diversifies toward services, and the UET becomes 
more downward sloping. With this combination of 
assumptions, CO2 emissions would decline to 516 
Mt in 2030 and 465 Mt by 2060.

Results and Scenarios
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Results and Scenarios

Table 2. Scenario assumptions for CO2 projections.

Scenario GDP real 
average 
growth 

2020–2060:

Energy prices:
Services 
share by 

2060:

Underlying 
emission trend:

CO2 
emission 

2030

CO2 
emission 

2060

Baseline 2.2%  
(central)

Fixed in nominal 
terms (low)

62%  
(central)

Last observed 
slope (central)

621 Mt 878 Mt

High GDP 3.1%  
(high) 635 Mt 985 Mt

Low GDP 1.2%  
(low) 607 Mt 781 Mt

High energy 
prices

2.2% 
(central)

Increasing up to 2030 
then fixed in real 

terms (high)
564 Mt 744 Mt

Central energy 
prices

Fixed in real terms 
(low) 611 Mt 805 Mt

Low Service

Fixed nominally (low)

49% 
(low) 646 Mt 1,096 Mt

High Service 75% 
(high) 602 Mt 769 Mt

Low UET

62% 
(central)

Slope declining 
annually below 
last observed 

value (low)

616 Mt 776 Mt

High UET Slope increasing 
annually above 
last observed 
value (high)

626 Mt 992 Mt

Lowest 
emissions 1.2% 

(low)

Increasing up to 2030 
then fixed in real 

terms (high)
75% (high)

Slope declining 
annually below 
last observed 

value (low)

516 Mt 465 Mt

Highest 
emissions 3.1% 

(high)
Fixed in nominal 

terms (low)
49% 
(low)

Slope increasing 
annually above 
last observed 
value (high)

666 Mt 1,391 Mt

Source: Authors’ analyses.
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Fig. 3 below overlays all these scenarios into 
one chart, illustrating the various CO2 emissions 
pathways for Saudi Arabia. These scenarios 
highlight how different factors affect CO2 
emissions in Saudi Arabia up to 2060. The gap 
between the highest and lowest projections 
underscores how emissions could evolve 

differently depending on the underlying drivers 
and the implications of Saudi efforts to reduce 
emissions. One key policy implication is that 
the Saudi government will need to implement 
more comprehensive policies, or carbon removal 
technologies will need to improve, for Saudi 
Arabia to achieve its net-zero ambition.

Figure 3. Fan chart of CO2 emission projections for Saudi Arabia (all scenarios).

Source: Authors’ analyses.

Results and Scenarios
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As a party to the Paris Agreement, Saudi 
Arabia has recently submitted its updated 
NDC, announcing its pledge to reduce its 

GHG emissions by 278 MtCO2eq annually by 2030 
below its baseline (Kingdom of Saudi Arabia, 2021, 
p. 2). Saudi Arabia’s NDC emission target is a 
baseline target. Therefore, it requires a quantitative 
baseline scenario showing how emissions would 
evolve if no further policies or actions were 
implemented. Although Saudi Arabia is one of the 
countries that has not yet publicly announced a 
quantitative baseline in its NDC, it has provided 
qualitative details on its baseline, which it refers to 
as “dynamic baselines” (Kingdom of Saudi Arabia, 
2021, p. 3). Saudi Arabia’s dynamic baselines 
depend on both the level of economic development 
and the extent of economic diversification occurring 
in the country over the coming years.

To better understand Saudi Arabia’s baseline 
emissions scenario and the influence of factors 
such as GDP and economic structure on emissions, 
we first model Saudi Arabian CO2 emissions using 
econometrics and then generate CO2 emissions 
projections under different sets of assumptions on 
the underlying drivers. The underlying drivers that 
we consider include GDP, energy prices, economic 
structure, and other exogenous factors.

We model CO2 emissions by utilizing the general-to-
specific approach via STSM and Autometrics, two 
econometric methods that allow greater flexibility 
in modeling a variable such as CO2 emissions. We 
estimate multiple equations that include different 
right-hand-side variables across both methods. 
Our econometric results reveal that the coefficients 
on variables such as GDP and energy prices are 
consistent across the estimated equations, which 
points to the robustness of the estimates. To 
generate the CO2 emissions projections across 
the different scenarios, we settle on a preferred 

equation that passes all diagnostic tests and is most 
useful in terms of the number of policy scenarios 
that it allows us to run.

Before using our preferred econometric model 
to generate projections, we build scenarios that 
reflect different assumptions on the underlying 
drivers of CO2 emissions. These drivers include 
GDP, energy prices, and economic structure, 
along with the UET, which captures the combined 
effect of exogenous factors such as consumer 
behavior and energy efficiency. We build 11 
scenarios, including a baseline scenario that acts 
as a reference, showing how CO2 emissions might 
evolve in Saudi Arabia without any additional 
policy efforts under the assumption that the 
underlying drivers continue to evolve in the future 
as they did in the past. We generate our baseline 
CO2 emissions projection by plugging the baseline 
assumptions on the evolution of drivers such as 
GDP into our preferred econometric model. Our 
baseline suggests that Saudi CO2 emissions 
would rise from 540 Mt in 2019 to 621 Mt in 2030 
and 878 Mt in 2060.

Our CO2 emissions scenarios highlight how different 
factors could affect CO2 emissions in Saudi Arabia 
up to 2060. The gap between the highest-emissions 
and lowest-emissions projections underscores how 
much emissions could evolve differently depending 
on the underlying drivers. In the highest-emissions 
scenario, in which GDP grows fastest, the economy 
becomes more heavily industrialized, energy prices 
decline in real terms, and the UET grows more 
steeply upward sloping, CO2 emissions grow to 
666 Mt in 2030 and 1,391 Mt by 2060. On the other 
hand, in the lowest-emissions scenario, in which 
GDP grows slowest, energy prices are reformed, the 
economy diversifies, and the UET becomes more 
steeply downward-sloping, CO2 emissions decline to 
516 Mt in 2030 and 465 Mt by 2060.

Conclusion and Policy Implications
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In addition to the highest- and lowest-emissions 
scenarios, we highlight how the underlying drivers 
can separately influence CO2 emissions. Given 
the emphasis that the Saudi NDC places on the 
economic structure and economic development, 
we highlight how these two variables separately 
influence CO2 emission trajectories. In the case 
of economic structure, we show that under a low-
services-share scenario, in which manufacturing 
grows rapidly to contribute 40% to GDP by 2060 
while the services sector grows slowly to 49% only, 
CO2 emissions grow to 646 Mt in 2030 and 1,096 
Mt in 2060. This low-services-share scenario is 
aligned with the heavy-industrialization scenario 
presented in Saudi Arabia’s NDC as one of its 
dynamic baselines. In contrast, under the high-
services-share scenario, in which services grow 
to contribute 75% of GDP by 2060, CO2 emissions 
grow to 602 Mt in 2030 and 769 Mt in 2060. This 
high-services-share scenario is aligned with the 
economic diversification scenario presented in 
Saudi Arabia’s NDC. The two scenarios differ by 
46 Mt for 2030 and 327 Mt for 2060, underscoring 
the impact of GDP composition on CO2 emission 

projections. Similarly, we show that in the high-
GDP-growth scenario, CO2 emissions would grow to 
635 Mt in 2030 and 985 Mt in 2060, while in the low-
GDP-growth scenario, CO2 emissions would grow to 
607 Mt in 2030 and 781 Mt in 2060. These results 
reveal why the Saudi government emphasized both 
variables in its updated NDC.

To conclude, our paper generates several key 
insights for policymakers. First, it highlights how 
different variables, such as GDP and energy prices, 
influence CO2 emissions projections. Second, it 
reveals the critical role that economic structure 
can play, especially in a country undergoing rapid 
economic transformations such as Saudi Arabia. 
Third, it demonstrates that even in the lowest-
emissions scenario, further efforts are needed 
to achieve net zero by 2060. These efforts could 
encompass policies such as carbon pricing and 
investment in carbon removal technologies such 
as direct air capture. These additional efforts will 
be necessary for the Kingdom of Saudi Arabia to 
achieve its goals of reaching net zero and securing 
a sustainable future.

Conclusion and Policy Implications
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Endnote

1 Interventions here refer to dummy variables that are included in a model to account for outliers.
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A.1. Literature Review

At the heart of this research are the climate change problems caused by greenhouse gas (GHG) emissions, 
particularly carbon dioxide (CO2) emissions, given that they represent a substantial share of total GHG 
emissions. Not surprisingly, therefore, the study of CO2 emissions is a significant part of research devoted 
to environmental issues. As countries look for alternative solutions to mitigate the negative impacts of 
CO2 emissions, research dedicated to modeling and forecasting the potential future trajectories of CO2 
emissions encompasses a substantial portion of overall CO2 emissions–related studies. To the best of our 
knowledge, no previous journal papers have focused on multivariate modeling of total CO2 emissions for 
Saudi Arabia using time series data. There are, however, several papers that use panel data that cover 
Saudi Arabia. Considering the vast number of papers modeling CO2 emissions, in this study, we review 
only a sample of the papers that include Saudi Arabia. In addition, since the main target of this study is 
to construct scenario simulations/forecasts, we focus on papers dealing with forecasting. For general 
information on papers devoted to CO2 emissions modeling and forecasting, Mitić et al. (2019) is a valuable 
reference.

Alkhathlan and Javid (2013) modeled Saudi Arabian CO2 emissions caused by energy consumption, as 
well as petroleum consumption, natural gas consumption, and electricity consumption, using data ranging 
from 1980 to 2011. Their income elasticity of CO2 emissions from fuel consumption is 0.45. However, 
Alkhathlan and Javid (2013) did not make forecasts, and their data are outdated and do not capture 
the behavior of CO2 emissions in recent years. In addition, these authors modeled only fuel-based CO2 
emissions, not total CO2 emissions. Usama Al-Mulali and Tang (2013) modeled CO2 emissions for GCC 
countries, including Saudi Arabia, using data from 1980 to 2009 and found a Saudi-specific income 
elasticity of 0.07. Arouri et al. (2012) studied the relationship for a panel of Middle East and North Africa 
(MENA) countries and concluded that there is an inverted U-shaped relationship for Saudi Arabia (their data 
span was 1981–2005), which is arguably surprising given Saudi Arabia’s stage of development. Mahmood 
et al. (2022), using data from 1980 to 2019, modeled the CO2 emissions for Gulf Cooperation Council 
(GCC) countries, considering the asymmetric impacts. For the Saudi Arabian case, they did not find an 
asymmetric impact, the coefficient being insignificant for negative income growth. Mahmood et al. (2022) 
did not perform forecasting exercises. Omri (2013) utilized GCC group data for 1990–2011 and found a 
monotonically increasing relationship between income and CO2 emissions, finding a CO2 income elasticity 
of 0.67. Omri et al. (2015), utilizing panel data from 1990–2011, modeled CO2 emissions for GCC countries. 
Interestingly, unlike Omri (2013), they concluded that there is an inverted U-shaped relationship between 
income and CO2 emissions for the Saudi case. Onifade et al. (2020) utilized Organization of Petroleum 
Exporting Countries (OPEC) members’ panel data from between 1990 and 2014 and concluded that income 
has an insignificant impact on CO2 emissions for Saudi Arabia. Ozcan (2013) used data from 1990 to 2008 
for the MENA countries and found an insignificant impact of income on CO2 emissions for Saudi Arabia. 
The common feature of all the papers mentioned above is that they produced projections for the future 
path of CO2 emissions. In addition, they used energy consumption as a driver of CO2 emissions, subject 
to misleading estimation results, as discussed in Jaforullah and King (2017). Jaforullah and King (2017) 
showed that using energy consumption to calculate CO2 emissions and then using the same variable for 
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modeling purposes may yield biased estimation results. Moreover, using some panel data techniques might 
result in under- or overestimation of the country-specific features of relationships (Kennedy, 2009, p. 285). 
In addition, based on the reviewed studies, the average income elasticity is approximately 0.40, although 
the basis for these findings is arguably questionable.

Shannak et al. (2022), using data from 1990 to 2019, modeled transport-specific CO2 emissions for Saudi 
Arabia. They also forecasted transport-specific CO2 emissions until 2030, with their forecast for 2030 being 
184 million tons of CO2 emissions. This paper addresses only transport-related and not total CO2 emissions.

Since the primary aim of this paper is to construct CO2 emissions scenario projections for Saudi 
Arabia, previous papers dealing with this task are considered here. To the best of our knowledge, only 
three previous studies produced projections for Saudi Arabia’s CO2 emissions: Köne and Büke (2010), 
Alshammari (2020), and Gasim et al. (2022). Köne and Büke (2010) used simple linear trend analysis to 
model CO2 emissions for the top 25 emitters, including Saudi Arabia. They made projections based on 
low-economic-growth, reference, and high-economic-growth scenarios for CO2 emissions in 2030, which 
ranged from 496 to 571 Mt. Through the developed circular carbon economy framework, Alshammari 
(2020) evaluated various technological possibilities and potentials for attaining climate objectives and 
projected CO2 emissions until 2050. According to Alshammari’s (2020) business-as-usual scenario, Saudi 
CO2 emissions would be between 643 Mt and 2156 Mt in 2050. Gasim et al. (2022) produced a baseline 
scenario for Saudi-specific total CO2 emissions until 2060, which is the target year for the fulfillment of 
the country’s net-zero emissions objective. Their projections suggest that in 2030 and 2060, Saudi CO2 
emissions could be 678 Mt and 970 Mt, respectively. However, the projections in Gasim et al.’s (2022) 
work based on a univariate modeling framework were built to provide a baseline projection, not to make 
simulations for policy scenarios.

Beyond the Saudi-specific studies, Hendry (2020) applied a different strategy and modeling approach 
to UK CO2 emissions data from 1860 to 2017. He used a general-to-specific modeling approach and a 
multipath-search machine-learning technique for modeling purposes and used the capital stock, GDP, oil 
consumption and coal consumption as potential drivers of CO2 emissions. Hendry (2020) concluded that 
the capital stock drives CO2 emissions in the UK, not GDP. Using the estimated model, Hendry (2020) 
assessed the achievability of the UK’s 2050 target. We apply a strategy similar to Hendry’s (2020) in terms 
of finding the relevant model considering different specifications and using techniques such as the STSM 
and Autometrics algorithms, enabling broader and more flexible options for parameter estimation.

This brief review of the relevant literature shows that no published papers have utilized time series data 
estimation approaches to estimate models for projecting Saudi Arabian CO2 emissions under different 
policy assumptions. This paper therefore aims to model Saudi Arabian CO2 emissions using a multivariate 
framework and then to use the estimated model(s) to make policy simulations until 2060 under different 
scenario assumptions.
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Appendix

A.2. Methodologies and Data

A.2.1. Overview

We model the natural logarithm of Saudi CO2 emissions (Mt), denoted by co2t
, as a function of a selection 

of vectors of drivers, denoted by Xt, where t denotes the year. In the general equations, one-year lags 
of all variables are included to capture autoregressive behavior, and we obtain our “preferred” or “final” 
equation by adding statistically significant interventions (also known as dummy variables) and dropping the 
insignificant right-hand-side variables while monitoring an array of diagnostic tests. This model could also 
be referred to as a “selected” model.

To estimate the various models, we consider two different econometric techniques: Autometrics and the 
structural time series model (STSM) since these both utilize a combination of trends and interventions but 
in very different ways. We also consider different sets of explanatory variables for each methodology, all of 
which are explained below.

A.2.2. Autometrics

The Autometrics multipath-search machine-learning algorithm (Doornik and Hendry, 2018) is applied to 
the general-to-specific (Gets) modeling approach (Hendry and Doornik, 2014). This identifies potential 
interventions caused by policy changes and shocks, whose omission might bias the estimation results. 
The algorithm automatically assigns one-time pulse, blip, change-in-level, and break-in-trend dummies to 
each observation and chooses the significant ones by utilizing the block-search algorithm. The Autometrics 
general specification utilized is therefore given by:

co2t =α0+α1co2t−1 +α2Xt +α3Xt−1+ ϑ
1

T∑ i IISt + τ
1

T∑ i SISt + ϕ
1

T∑ i DIISt + ω
1

T∑ iTISt +εt � (A1)

where co2t
 is the natural logarithm of Saudi CO2 emissions (Mt) in year t, Xt is a vector of drivers in year 

t, IISt is an impulse indicator, SISt is a step indicator, DIISt is a differenced impulse-indicator saturation 
dummy, and TISt is a trend indicator. ai, ϑi, τi, ϕi, ωi are regression coefficients to be estimated, and εt  is a 
random error term ∼ NID (0, σ ε

2).

The modeling procedure using Autometrics has two parts (see, for example, Castle et al., 2017; Hendry 
2020). First, the constant term and all the lagged values of the dependent and independent variables are 
fixed, allowing the algorithm to search for and choose the intervention dummies using what is referred to 
as a “minute” significance level (0.01%). If, however, no interventions are found, the search is redone but 
with a “tiny” significance level (0.1%), and if again no interventions are found, the search is redone but with 
a “small” significance level (1%) (see Hendry and Doornik (2014) on how to choose the optimal significance 
level). The specification that emerges from this process is regarded as the general unrestricted model 
(GUM). Second, the chosen dummies from the first stage are fixed with the lagged values of the dependent 
and independent variables unfixed, and a new search is undertaken to determine the final preferred 
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specification based on the congruency criterion and multiple diagnostic tests. In this step, what is referred 
to as a “huge” significance level (10%), as suggested by Castle et al. (2021), is utilized for the search. This 
is all undertaken using the multipath selection procedure embedded in the PcGive-15.10 econometric 
modeling program (Doornik and Hendry, 2018). This procedure is applied to the four sets of explanatory 
variables outlined below, and the results are discussed below after we outline the alternative estimation 
methodology, the STSM.

A.2.3. STSM

The STSM models co2t
 emissions using a stochastic trend, which captures long-term movements in time 

series variables and can be extrapolated into the future (Harvey, 1989). For consistency, the STSM general 
specification is:

co2t t
=γt +α1co2t−1 +α2Xt +α3Xt−1+εt � (A2a)

where co2t 
 Xt, and ai are as defined above, γt is a stochastic trend (or time-varying intercept) and εt  is 

a random error term ∼ NID (0, σ ε
2). The stochastic trend consists of a level mt and a slope bt, which are 

defined as follows:

µt =µt−1+βt−1+ηt 	�  (A2b)

βt =βt−1+ξt 	�  (A2c)

where ηt ∼ NID (0, σ η
2) and ξt ∼ NID (0, σ ξ

2) are mutually uncorrelated random disturbance terms. If the 
variances of either ηt or ξt are found to be zero, that component of the trend becomes deterministic. If 
both hyperparameters are found to be zero, the stochastic trend collapses into a deterministic trend. As 
in Autometrics, different types of dummy interventions can be identified and added to the model (Harvey 
and Koopman, 1992). These interventions capture important breaks and structural changes during the 
estimation period at certain dates. These interventions can be incorporated into the stochastic trend, which 
can be defined as follows:

γt = mt + irregular interventions (Irrt) + level interventions (Lvlt) + slope interventions (Slpt)� (A2d)

The STSM is also often referred to as the unobserved components model since the trend attempts to 
capture any systematic influences on the left-hand-side dependent variable not captured by the right-
hand-side explanatory variables. Hence, in this case, the trend represents the changes in CO2 emissions 
driven by a range of unobserved exogenous or autonomous factors, such as exogenous energy and CO2 
efficiency, changes in environmental command-and-control regulations (i.e., policies that are not market 
driven), increased environmental education and awareness, cultural changes, and changes in tastes and 
fashion. The estimated trend was referred to as the underlying energy demand trend when applied to 
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behavioral energy demand functions (Hunt et al., 2003 and Hunt and Ninomiya, 2003), but it has recently 
also been applied to CO2 relationships by Javid and Khan (2020) and Guven and Kayakutlu (2020) to 
estimate underlying carbon emission trends and dubbed by Guven and Kayakutlu (2020) the underlying 
emissions trend (UET), which is the term that we use here.

To estimate the STSM, equations (A2a), (A2b), and (A2c) are initially estimated by maximum likelihood 
along with the Kalman filter in the software package STAMP 8.40 (Koopman et al., 2007). Where identified, 
irregular, level, and/or slope interventions are included in the model, and statistically insignificant variables 
are excluded while we ensure both that the model passes a range of diagnostic tests (detailed in the results 
below) and that the auxiliary residuals associated with the irregular, level, and slope components do not 
suffer from nonnormality. Consistent with the Autometrics estimation, this approach is applied to four sets of 
explanatory variables, and the results are discussed below.

A.2.2. Data

Data

Data on total CO2 emissions were obtained from Enerdata (2022). These data exclude emissions from land 
use, land use change, and forestry.

Source: Enerdata (2022).
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Source: Gross domestic product at constant prices, GASAT (2021).

Source: Gross domestic product at constant prices, GASAT (2021) (2010=100).

Appendix

The real GDP data used in our estimations are obtained from the General Authority of Statistics (GASTAT) 
latest release from 1984–2021.

The data are comprised of nine aggregated sectoral representations of the Saudi economy. We combine 
these into three aggregated sectors to reduce dimensionality to compute the aggregate shares in our 
preferred model, and Table A1 displays our sectoral aggregation.
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Our aggregate real energy index in the figure below is constructed in two steps. First, sectoral energy 
prices in SAR per ton of oil equivalent are obtained from Hasanov et al. (2020). Second, we construct 
the index by calculating a weighted average of these sectoral energy prices, in which the weight for each 
sector is its contribution to gross domestic product (GDP), which is obtained from GASTAT (2021). The 
index covers all sectors in the economy, including the energy end-use sectors (e.g., manufacturing and 
financial services) and the transformation sectors (e.g., power and refining). The aggregate energy price is 
adjusted for inflation using the consumer price index (CPI), also obtained from GASTAT (2021). There are 
three elements influencing this index: changes in energy prices, inflation, and changes in the GDP shares 
of sectors. This aggregate energy price for the Saudi economy captures the average change in energy 
prices for the Saudi economy. Using a single average energy price variable such as this index helps reduce 
dimensionality issues that arise from including too many separate energy prices as independent variables 
in an econometric equation.

Table A1. Economic sector cluster.

Economic Sector Breakdown GASTAT Sector Aggregation

Agriculture, Forestry & Fishing Agriculture
Mining & Quarrying Oil & Gas
Manufacturing Manufacturing
Electricity, Gas and Water Manufacturing
Construction Manufacturing
Wholesale & Retail Trade, Restaurants & Hotels Services
Transport, Storage & Communication Services
Finance, Insurance, Real Estate & Business Services Services
Community, Social & Personal Services Services

Source: GASTAT 2021 and authors’ aggregation.

Real aggregate energy price (SAR/TOE).
Source: Hasanov et al (2020), GaSTAT, and authors’ calculation.
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A.3. Estimation Results

A.3.1. Overview

The overarching aim of the estimation is to find a sound statistically acceptable model that includes 
appropriate right-hand-side variables (or drivers) that are important in driving CO2 emissions now and in 
the future. Therefore, we consider several “sets” of drivers, Xt, in our initial general models that we think 
might produce such a preferred specification to be used to underpin the scenarios, following the estimation 
strategy for each set as outlined above. These sets include the following.

	 SET I: The natural logarithms of gross domestic product (gdpt) and the real energy price (pt).

	 SET II: The natural logarithms of sectoral value added for manufacturing, services, and agriculture  
(manvat, agrvat, and srvvat) and the real energy price (pt).

	 SET III: The natural logarithm of GDP (gdpt), the natural logarithm of the real energy price (pt), and the 
level share of services in nonoil GDP (SRV_SHt).

	 SET IV: The natural logarithms of GDP (gdpt), the real energy price (pt), and the share of services in 
nonoil GDP (srv_sht).

SET I is initially considered since GDP and the real energy price are seen as two of the most substantive 
drivers, and although they prove to be statistically important, in addition to the level of economic activity, 
the economic structure is very important in driving CO2 emissions. Therefore, in SET II, the GDP variable 
is dropped and replaced in the initial general model by the value added of the manufacturing, agriculture, 
and service sectors. SET III at this stage further augments Step 1 with the proportionate share of services 
within nonoil GDP included in the general model – the idea being that if total GDP were constant, then an 
increase in the share of services (and implicitly a decrease in the share of manufacturing and agriculture) 
of nonoil GDP could potentially substantially reduce CO2 emissions. Finally, SET IV, based on the same 
principle as SET III, augments Step I with the natural logarithm of the share of services within nonoil GDP 
instead of the actual proportion. Where applicable, the preferred models obtained with each of two econometric 
methodologies, Autometrics and the STSM, with the various sets of drivers, are presented and discussed below.

A.3.2. Autometrics Specifications

The estimated preferred specifications from applying the Autometrics estimation strategy outlined above 
to SET I and SET II only are presented in Table A1 since no acceptable specification is found for SET III 
and SET IV, with the services share variables being insignificant and/or having the wrong sign. Hence, 
consistent with the general-to-specific modeling approach, the estimations that started with SET III and SET 
IV result in the final model for SET 1 presented in Table A2, which passes all diagnostic tests and includes 
a few interventions with no lagged dependent variable and only contemporaneous terms for the real energy 
price and GDP. The estimate suggests that a 1% increase in the real energy price and GDP would reduce 
CO2 emissions by 0.14% and increase CO2 emissions by 0.13%, respectively.

Appendix
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Table A2. Summary of Autometrics estimation results (dependent variable: co2t
).

SET I SET II SET III SET IV
Variable/Coefficients
Intercepts 5.333*** -2.2140*** Given that the 

signs of the 
extra drivers 
included in the 
model were 
not statistically 
acceptable 
and/or of the 
wrong expected 
sign, there is 
no Autometrics 
model for SET III.

Given that the 
signs of the 
extra drivers 
included in the 
model were 
not statistically 
acceptable 
and/or of the 
wrong expected 
sign, there is 
no Autometrics 
model for  
SET IV.

co2t–1 - 0.4052***
pt -0.1366*** -0.0483***

pt–1 - -

gdpt 0.1306**

gdpt–1 -

manvat 0.7342***

manvat–1 -0.2504***

agrvat -

agrvat–1 -

srvvat -

srvvat–1 -

SRVSH_NOt

SRVSH_NOt–1

srvsh_not

srvsh_not–1

Interventions/
Indicator

S1:1986** T1:1987***

T1:1992*** S1:1990***

T1:1993*** S1:1993***

T1:2015*** T1:1996***

T11997***

I:2002***

Long-run co2! =  
5.33 – 0.14p + 0.13gdp

co2! =  
– 3.72 – 0.08p + 0.81manva

Goodness of Fit
R2 0.999 0.999
R2 0.999 0.999
AIC -5.2345 -5.6781
SC -4.9235 -5.1893
F F(6, 28) = 4512 F(10, 24) = 4547
Residual diagnostics
AR(1-2) F(2, 26) = 0.02 F(6, 22) = 0.02
ARCH (1-1) F(1, 33) = 0.76 F(1, 33) = 0.10
Normality 0.87 5.75*
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For SET II, the final equation includes more interventions than for SET I and passes all diagnostic tests 
other than the normality test of the residuals, which fails at the 10% significance level. The final equation for 
SET II, unlike that for SET I, does include a lagged dependent variable as well as a contemporaneous term 
for the real energy price and a contemporaneous and lagged term for manufacturing sector value added. 
However, the value added variables for the other sectors are not retained since they are not statistically 
significant. The Autometrics estimated equation for SET II suggests that in the long run, a 1% increase in 
the real energy price and manufacturing value added would reduce CO2 emissions by 0.08% and increase 
CO2 emissions by 0.81%, respectively.

A.3.3. STSM Specifications

The estimated preferred specifications from applying the STSM procedure to all four sets of explanatory 
variables are presented in Table A2. For SET I, the final equation includes several interventions and passes 
all diagnostic tests. There is no lagged dependent variable and, like the Autometrics preferred model 
for SET I, retains only contemporaneous terms for the real energy price and GDP, suggesting that a 1% 
increase in the two variables would reduce CO2 emissions by 0.10% and increase CO2 emissions by 0.23%, 
respectively – a response similar to that under the Autometrics model for the real energy price for SET I 
but somewhat higher for GDP. The preferred model also includes a UET, illustrated at the top left of Fig. A1. 
This is generally upward sloping (CO2 increasing), although the rate of increases falls toward the end of the 
estimation period given the inclusion of a slope intervention in 2015. At the end of the estimation period, 
with the real energy price and GDP held constant, the trend suggests an autonomous increase in CO2 
emissions of 0.72% per annum – which comes from an estimated underlying slope increase of 4.45% per 
annum, but the slope intervention in 2015 brings this down by 3.73% per annum.

For SET II, the final equation includes only one level intervention for 1991 and passes all diagnostic 
tests. Unlike the preferred Autometrics model for SET II, there is no lagged dependent variable or lagged 
manufacturing value added term; however, a contemporaneous term for agriculture value added is  
retained, as is the contemporaneous term for the real energy price (as in the Autometrics model). The  

Appendix

Hetero F(10, 24) = 0.90 F(15, 18) = 0.52
Hetero-X F(17, 17) = 0.69 n/a
RESET23 F(2, 26) = 0.01 F(2, 22) = 0.40

Notes:
- *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively;
- R2 is the coefficient of determination, R2 is the adjusted coefficient of determination, F is the overall goodness-of-fit statistic 
distributed as F(v1, v2), and AIC and SC are the Akaike and Schwarz information criteria when the log-likelihood constant is included;
- AR(1-2) is the 2nd-order autocorrelation statistic distributed as F(v1, v2);
- ARCH (1-1) is the 1st-order autoregressive conditional heteroskedasticity statistic distributed as F(v1, v2);
- Normality is the Doornik and Hansen statistic and is approximately distributed as χ 2

(2);
- Hetero and Hetero-X are heteroscedasticity statistics both distributed as F(v1, v2); and
- RESET is the Ramsey RESET statistic distributed as F(v1, v2).
Source: Authors’ estimation results
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Table A3. Summary of the STSM estimation results (dependent variable: co2t
).

SET I SET II SET III SET IV

Variable/ 
Coefficients
co2t–1

- - - -

pt -0.1037*** -0.1054*** -0.1174*** -0.1174***
pt–1 - - - -
gdpt 0.2285*** 0.1694*** 0.1712***
gdpt–1 - 0.1461*** 0.1458***
manvat 0.3986***
manvat–1 -
agrvat 0.4874***
agrvat–1 -
srvvat -
srvvat–1 -
SRVSH_NOt -1.2455***
SRVSH_NOt–1 -
srvsh_not -0.8313***
srvsh_not–1 -
Interventions:

Lvl1987*** Lvl1991*** Irr1988*** Irr1988***
Lvl1994*** Lvl1994*** Lvl1994***
Irr2010* Irr2002** Irr2002**

Irr2007*** Irr2007***
Irr2010*** Irr2010***
Irr2012** Irr2012**

Slp2016*** Slp2016***

UET component Fixed level 
Stochastic slope

Stochastic level 
Fixed Slope

Fixed. level 
Fixed slope

Fixed. level 
Fixed slope

Long-run co2! = 
γ  – 0.10p + 0.23gdp

co2! = 
γ  – 0.11p + 0.40manva 

+ 0.49agrva

co2! = 
γ  – 0.12p + 0.32gdp 
– 1.25SRVSH_NO

co2! = 
γ  – 0.12p + 0.32gdp 

– 0.83srvsh_no
Goodness of Fit
p.e.v. 0.00031018 0.00035536 0.00007197 0.00007255
AIC -7.5641 -7.5424 -8.7393 -8.7313
BIC -7.1641 -7.2313 -8.1172 -8.1092
R2 0.9988 0.9986 0.9998 0.9998
R2

d 0.8206 0.7793 0.9661 0.9658
Residual 
Diagnostics



32Projecting Saudi Arabia’s CO2 Dynamic Baselines to 2060: A Multivariate Approach

Appendix

Normality 0.84 0.08 0.04 0.03
H(n)

H(9) = 1.65 H(9) = 0.73 H(7) = 0.82 H(7) = 0.80

r(1) -0.08 -0.03 0.01 0.01
r(2) -0.16 -0.07 -0.00 -0.00
r(3) -0.10 0.08 -0.00 -0.00

r(q) r(6) = 0.02 r(6) = 0.20 r(5) = -0.12 r(5) = -0.12

Q(q,q-p)
χ 2

(4) = 2.87 χ 2
(4) = 5.76 χ 2

(3) = 0.76 χ 2
(3) = 0.80

Auxiliary 
Residuals
Normality 
– Irregular 0.36 0.74 0.69 0.70

Normality – Level 1.23 0.16 1.43 1.28
Normality – Slope 4.13 2.42 0.56 0.64

Prediction Failure χ 2
(7) = 11.30 χ 2

(8) = 6.58 χ 2
(6) = 3.76 χ 2

(6) = 3.71

Notes:
- *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively;
- R2 is the coefficient of determination, Rd

2 is the coefficient of determination based on differences, and p.e.v. is the prediction error 
variance;
- AIC and BIC are the Akaike and Bayesian information criteria based on the p.e.v.
- Normality is the Bowman–Shenton statistics, which are approximately distributed as χ 2

(2);
- H(n) is a heteroscedasticity statistic distributed as F(n,n);
- r(1), r(2), r(3), and r(q) are the serial correlation coefficients at the equivalent residual lags, approximately normally distributed;
- Q(q,q-p) is the Box–Ljung statistic distributed as χ 2

(q–p); and
- Prediction Failure is a predictive failure statistic distributed as χ 2

(f). 
Source: Authors’ estimation results
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model, therefore, suggests that a 1% increase in the real energy price would reduce CO2 emissions by 
0.11% and a 1% increase in manufacturing value added and agriculture value added would increase CO2 
emissions by 0.40% and 0.49%, respectively – results that are somewhat different from those obtained by 
the Autometrics estimates for SET II. The estimated UET for the STSM estimates for SET II is illustrated  
in the top right of Fig. A1 and again is generally upward sloping, and at the end of the estimation period, 
with the real energy price, manufacturing value added, and agriculture value added held constant, the trend 
suggests an autonomous increase in CO2 emissions of 1.19% per annum – somewhat larger than that 
under the SET 1 STSM specification.

The preferred specifications for SET III and SET IV are very similar, with the same interventions and the 
same terms retained for the real energy price and GDP, the only difference being that, in SET III, the 

Figure A1. Estimated underlying emissions trends (UETs) for the STSM preferred specifications.

Source: Authors’ estimation results.
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contemporaneous term for the share of services value added in nonoil GDP is included whereas, for SET 
IV, it is the natural logarithm of the share of services value added in nonoil GDP instead. Furthermore, both 
pass all diagnostic tests, and both suggest that a 1% increase in the real energy price and GDP would 
reduce CO2 emissions by 0.12% and increase CO2 emissions by 0.32%, respectively. Not surprisingly, the 
estimated UETs for the two specifications are also very similar, as illustrated in the bottom half of Fig. A1; 
moreover, both trends suggest that at the end of the estimation period, holding the set of drivers constant, 
there would be an autonomous increase in CO2 emissions of 0.45% per annum made up of an estimated 
underlying slope increase of 3.91% per annum that is reduced somewhat by the break in the slope in 2016 
(i.e., the estimated slope intervention in 2016) of 3.46% per annum; thus, the only difference between the 
SET II and SET IV estimated models is how services value added is entered in the equations. For SET III, 
it is the actual proportionate share of services in nonoil GDP, and the estimated coefficient suggests that a 
one-percentage-point increase in this share would reduce CO2 emissions by 1.25%, whereas for SET IV, 
it is the natural logarithm of the share, and the estimated coefficient suggests that a one-percentage-point 
increase in the share would reduce CO2 emissions by 0.83%.

A.3.4. Choice of Preferred Specification for Baseline Prediction and Scenarios

The previous section presented several results using the two different methodologies and the different 
sets of explanatory variables. This illustrates our attempt to find a sound statistically acceptable model 
that includes the appropriate and important drivers of CO2 emissions now and in the future. Multiple 
assumptions on the evolution of these underlying drivers are used to underpin the CO2 emissions scenarios 
presented in the main text. Therefore, a choice had to be made from those models presented above based 
on their statistical validity and the usefulness of the models for the scenario policy analysis.

Considering the two Autometrics specifications in Table A1, the specification for SET II has lower 
information criteria values but fails one of the diagnostic tests; hence, on balance, the SET I specification 
that includes the real energy price and GDP is preferred. Considering the four STSM specifications in 
Table A2, they all pass all the diagnostic tests, but the specifications for SET III and SET IV clearly have 
lower information criteria values than the specifications for SET I and SET II – so this would suggest that 
the choice is between the SET III and SET IV specifications. Out of these two, it is a close decision, but 
given that the SET III specification has slightly lower criteria values and that the actual share rather than the 
natural log of the share is easier to interpret, it is preferred to the SET IV specification. Thus, our decision 
comes down to choosing between the Autometrics specification for SET I and the STSM specification 
for SRT III, and given the extra drivers available in the STSM specification in terms of the service value 
added share and the trend, the specification for SET III is chosen and used to generate the scenarios 
in the main text.
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About the Project
This project, “Modeling Energy Consumption and its Impacts in Saudi Arabia,” aims to conduct advisory and applied 
research activities focused on modeling and forecasting indicators of energy consumption and their impacts in Saudi 
Arabia. In line with the ongoing energy policies that the Kingdom is implementing, the project focuses on three main 
areas:

	 Modeling and forecasting energy consumption indicators.

	 Modeling and forecasting the environmental impacts of energy consumption.

	 Investigating the trajectories and potential of energy efficiency.

The first area focuses on advisory and applied research activities around modeling indicators of energy consumption. 
Applying econometric techniques and tools to time series data on targeted indicators will enable the project to reveal 
relation-specific parameters, their features over time, and forecast values for the expected or designed scenarios.

The second area models the environmental impacts of energy consumption, employing econometric techniques and 
tools to the relevant framework and data to make policy simulations and forecasts. Considering the ongoing activities 
in the Kingdom to control and mitigate the adverse impacts of energy consumption, this area will contribute to 
policymaking by providing a clear picture of the channels and trajectories of these adverse impacts.

The third area will analyze the trajectories and potential of energy efficiency at the sectoral and regional levels. This 
will reveal historical efficiency trends, potentials, and channels to make and increase energy consumption efficiency.



40Projecting Saudi Arabia’s CO2 Dynamic Baselines to 2060: A Multivariate Approach

www.kapsarc.org


	_Hlk115776971
	_Hlk114475996
	_Hlk114553525
	_Hlk114487898
	_Hlk107505621
	_Hlk113519638
	_Hlk114468341
	_Hlk114652590
	_Hlk115248490
	_Hlk115248261
	_Hlk114645184

