Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis

Hossa Almutairi and Axel Pierru

June 2023

Doi: 10.30573/KS--2023-DP12
Acknowledgements

The authors thank Frank Felder, Marzio Galeotti, Fateh Belaid and Adam Sieminski for their helpful comments on earlier drafts.

About KAPSARC

KAPSARC is an advisory think tank within global energy economics and sustainability providing advisory services to entities and authorities in the Saudi energy sector to advance Saudi Arabia’s energy sector and inform global policies through evidence-based advice and applied research.

This publication is also available in Arabic.

Legal Notice

© Copyright 2023 King Abdullah Petroleum Studies and Research Center (“KAPSARC”). This Document (and any information, data or materials contained therein) (the “Document”) shall not be used without the proper attribution to KAPSARC. The Document shall not be reproduced, in whole or in part, without the written permission of KAPSARC. KAPSARC makes no warranty, representation or undertaking whether expressed or implied, nor does it assume any legal liability, whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of any information that is contained in the Document. Nothing in the Document constitutes or shall be implied to constitute advice, recommendation or option. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect the official views or position of KAPSARC.
Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis

By storing carbon dioxide CO₂ captured from the atmosphere or point sources into oil fields, carbon capture and storage with enhanced oil recovery (CCS-EOR) increases the fields’ output by raising reservoir pressures. Since CO₂-EOR has been experimented with for decades and the revenues from the additional oil production improve projects’ economics, CCS-EOR is the most readily deployable CCS technology. However, public support for CCS-EOR projects is sometimes contested on the grounds that the resulting increase in oil production undermines their environmental benefits. Addressing this concern requires determining the effects of implementing CCS-EOR on global CO₂ emissions. This note presents a simple approach based on a marginal reasoning consistent with economic decision-making. It produces analytical formulas that account for the effects on the global oil market of incentivizing CCS-EOR. In addition, we quantify the volume of oil that can be decarbonized by storing a tonne of captured CO₂ through EOR from different perspectives. We produce numerical results based on a first-cut calibration. Results suggest that, from an economic perspective, CCS-EOR is a technology that mitigates global emissions. However, after accounting for the need to decarbonize the EOR oil, the reduction in emissions is significantly less than the stored quantity of CO₂. If fully allocated to oil production, the environmental benefits of capturing a tonne of CO₂ and storing it through conventional EOR can allow the oil producer to decarbonize 3.4 barrels on a well-to-wheel basis and 14.4 barrels when offsetting its oil-upstream emissions only. Fiscal incentives granted by governments to support CCS-EOR as a climate-change mitigation technology should be sized accordingly. We compare our findings to the size of the subsidy in the revised Section 45Q of the 2022 United States Inflation Reduction Act.

Summary

By storing carbon dioxide CO₂ captured from the atmosphere or point sources into oil fields, carbon capture and storage with enhanced oil recovery (CCS-EOR) increases the fields’ output by raising reservoir pressures. Since CO₂-EOR has been experimented with for decades and the revenues from the additional oil production improve projects’ economics, CCS-EOR is the most readily deployable CCS technology. However, public support for CCS-EOR projects is sometimes contested on the grounds that the resulting increase in oil production undermines their environmental benefits. Addressing this concern requires determining the effects of implementing CCS-EOR on global CO₂ emissions. This note presents a simple approach based on a marginal reasoning consistent with economic decision-making. It produces analytical formulas that account for the effects on the global oil market of incentivizing CCS-EOR. In addition, we quantify the volume of oil that can be decarbonized by storing a tonne of captured CO₂ through EOR from different perspectives. We produce numerical results based on a first-cut calibration. Results suggest that, from an economic perspective, CCS-EOR is a technology that mitigates global emissions. However, after accounting for the need to decarbonize the EOR oil, the reduction in emissions is significantly less than the stored quantity of CO₂. If fully allocated to oil production, the environmental benefits of capturing a tonne of CO₂ and storing it through conventional EOR can allow the oil producer to decarbonize 3.4 barrels on a well-to-wheel basis and 14.4 barrels when offsetting its oil-upstream emissions only. Fiscal incentives granted by governments to support CCS-EOR as a climate-change mitigation technology should be sized accordingly. We compare our findings to the size of the subsidy in the revised Section 45Q of the 2022 United States Inflation Reduction Act.
Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis

Carbon dioxide enhanced oil recovery (CO₂-EOR) is the process of injecting CO₂ into mature oil reservoirs to make the oil flow more easily to the well. Although CO₂-EOR was initially developed to boost hydrocarbon recovery, it can also be used as a tool to store CO₂ underground. When the CO₂ is captured at emission sources such as industrial facilities or power plants, the whole process is called CCS-EOR and represents a carbon, capture, utilization and storage (CCUS) activity.

The status of CCS-EOR as a climate change mitigation technology is often contested on the grounds that, by increasing oil production, it would ultimately lead to additional CO₂ emissions. This concern is regularly raised when projects storing captured CO₂ through EOR are discussed in the press. See, for instance. Bloomberg (2022) and Financial Times (2022). At the same time, CCS-EOR is the most readily deployable CCS technology (IRENA 2021).¹

Addressing the question of the potential impact of CCS-EOR projects on global CO₂ emissions is critical, since, presumably, the degree to which governments support these projects should be commensurate with their resulting reduction in emissions. Therefore, to design incentives that enable CCS-EOR projects, governments need to know whether the implementation of CCS-EOR reduces global CO₂ emissions, and, if so, to what extent.

A serious response to this question requires determining whether or not the CO₂ emissions of the additional oil production should be attributed to the CCS-EOR process. The literature² on lifecycle assessment, which attempts to estimate the greenhouse gas emissions associated with industrial processes, does not offer any consensus on this issue. Some authors argue that the emissions from consuming the additional barrels produced by EOR should be attributed to the CCS-EOR technology. Others argue the opposite by invoking the ‘displacement assumption,’ i.e., these additional barrels replace barrels that would otherwise have been produced by other oil suppliers. To our knowledge, the only economic study providing insights on this question was conducted by the International Energy Agency (IEA, 2015). It used a large-scale oil model to simulate the impact of new CO₂-EOR projects on global emissions.

In contrast to the numerical, simulation-based approach used by the IEA (2015), this paper develops an alternative approach producing analytical formulas. It is based on a marginal reasoning consistent with economic decision making. Its simple, partial-equilibrium framework identifies the effects of incentivizing CCS-EOR projects on global emissions. These effects are only implicitly accounted for in the numerical results of previous large-scale, technology-rich models with market-clearing commodity prices. Our approach, instead, allows us to abstract from the complexity of these models and to focus on the elements that are solely relevant to the question under consideration.

We believe that this stylized approach offers a sharper perspective and, therefore, is more conducive to clarifying the debate surrounding the impact of CCS-EOR projects on global emissions.

The next two sections develop our analytical framework and calculate the reduction in global emissions per tonne of CO₂ stored from a well-to-wheel³ economic perspective. Section 4 contrasts different possible perspectives. Section 5 derives numerical estimates based on an illustrative calibration. Section 6 determines the volume of oil that can be decarbonized by storing a tonne of captured CO₂ through EOR. The final section discusses some implications of the results.

Introduction
The oil market’s equilibrium is given by the intersection of global supply and demand curves, with the supply curve indicating the aggregated production of all projects profitable at a given price. The oil market is assumed to be in equilibrium at the price p, with the supply of oil, s, equal to oil demand, q.

We consider a new policy supporting CCS-EOR projects that otherwise would not be profitable at the current oil price. The provided support, which can take different forms, such as fiscal incentives (i.e., subsidies) or public ownership, helps these projects materialize by rendering them profitable.

These projects capture the CO$_2$ emissions of an industrial facility or remove CO$_2$ from the atmosphere through a direct air capture (DAC) installation, injecting the CO$_2$ captured into an oil field to increase its output.

By adding new oil production, the implementation of the policy results in reshaping the oil supply curve, which shifts to the right in the vicinity of the current oil price. We assume that the implementation of the policy results in storing β tonnes of CO$_2$ in oil fields and producing α barrels of additional oil through CO$_2$-EOR.4 The α barrels of EOR oil are sold on the global market, impacting the initial market equilibrium. Figure 1 illustrates the implementation of the new CCS-EOR projects.

We begin by quantifying the effects of the α barrels of EOR oil on the market equilibrium. First, the global oil supply curve shifts to the right by α barrels, as shown by Figure 2.

Given the (unchanged) existing demand curve, this supply shift leads to a new supply-demand equilibrium where the quantity of oil that is consumed is increased by Δq and the supply is increased by $\alpha + \Delta s$. Note

Figure 1. Implementation of CCS-EOR projects.

Source: Authors.
that Δs is a negative quantity since it represents the decrease in supply due to the lower price at the new equilibrium. In other words, the quantity of oil ‘displaced’ from the global oil market by the EOR oil is $-\Delta s$.

At the new equilibrium, the change in supply equals the change in demand. We therefore have $\alpha + \Delta s = \Delta q$. The equilibrium price p is changed by Δp (with $\Delta p \leq 0$). Figure 2 illustrates the changes in price and quantities.

Let ε_s be the price elasticity of global oil supply and ε_d be the price elasticity of global oil demand. This implies:

$$\frac{\Delta q}{q} = \varepsilon_d \frac{\Delta p}{p} \quad \text{and} \quad \frac{\Delta s}{s} = \varepsilon_s \frac{\Delta p}{p}$$

Since $q = s$ we have

$$\Delta q = \frac{\alpha}{1 - \frac{\varepsilon_d}{\varepsilon_s}}$$

The number of barrels displaced by the EOR oil is therefore

$$\Delta S = \frac{\alpha}{\varepsilon_d - 1}$$

which is less than α since $-\frac{\varepsilon_d}{\varepsilon_s} \geq 0$.

If the supply is perfectly inelastic (the supply curve is vertical), $\varepsilon_s = 0$, so that $-\Delta s = 0$, there is no displacement and all the emissions produced from the EOR oil must be attributed to the CCS-EOR technology. On the other hand, if the elasticity of global supply is perfectly elastic (the supply curve is horizontal) so that $\varepsilon_s = +\infty$, there is ‘full displacement’ and no emissions from the EOR oil produced should be allocated to the CCS-EOR technology.
Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis

Impact of CCS-EOR Projects on Global Emissions

Capturing a tonne of CO₂ does not necessarily imply an equivalent reduction in emissions at the point source. For power or industrial plants, the point-source facility equipped with carbon capture is more energy intensive per unit of output than the same facility without carbon capture. Therefore, for the same level of output, the facility with carbon capture consumes more energy than without carbon capture, which leads to more CO₂ to capture. For DAC installations, the consumption of energy to fuel the capturing process can release emissions. In addition, the transportation of the captured CO₂ to the oil field can generate some emissions. We thus assume that a tonne of CO₂ stored through EOR corresponds to an actual reduction\(^5\) in emissions of \(r\) tonnes at the point of capture (with \(r \leq 1\)).

Consider now the emissions related to the CO₂-EOR part of the projects. We will refer to \(u + f\) as the well-to-wheel emissions of a barrel of EOR oil produced, where \(u\) is the producer’s upstream emissions per barrel\(^6\) of EOR oil produced and \(f\) is the midstream and downstream emissions per barrel of EOR oil. We also define \(v + g\) as the well-to-wheel emissions of a barrel of displaced oil, where \(v\) is the upstream emissions per barrel of displaced oil, and \(g\) is the midstream and downstream emissions per barrel of displaced oil.

The total amount of global emissions \(E\) attributable to implementing the CCS-EOR projects is obtained by summing three simultaneous effects:

- the reduction in emissions due to the capture and storage of CO₂, equal to \(r\beta\) tonnes;
- the increase in emissions due to the EOR oil produced, equal to \((u + f)\alpha\) tonnes;
- the saving in emissions due to the oil displaced, amounting to \(-(v + g)\Delta s\) tonnes.

We therefore have

\[
E = -r\beta + (u + f)\alpha + (v + g)\Delta s
\]

Which gives

\[
E = -r\beta + \alpha \left(u + f - \frac{v + g}{1 - \varepsilon_d / \varepsilon_s} \right)
\] \(\text{(1)}\)

The quantity \(E\) represents the consolidated, global impact of capturing CO₂ and storing it through CO₂-EOR. To our knowledge, despite its simplicity, the analytical formula (1), which includes price elasticities that appear through the marginal calculation, is new to the literature. It offers a compact formulation of the result, with clarity on the role of the various parameters and the effects at play. In this sense, it is more transparent than numerical results derived from a large-scale simulation model.

In addition, formula (1) allows for decentralizing the calculations of impacts on global emissions, since it can be applied to every CCS-EOR project on a stand-alone basis without having to use a global, detailed supply-demand model. Note that the decentralization of calculations at the project level requires using consistent values for the elasticities \(\varepsilon_d\), \(\varepsilon_s\), and to some extent (it can depend on the characteristics of the EOR oil produced) \(v + g\), for all projects.

Note that formula (1) was derived assuming that, by rendering additional quantities of CO₂ available to EOR, public financial support for CCS-EOR projects results in shifting the global oil supply curve. However, for some CCS-EOR projects, the additional oil produced by injecting CO₂ would have,
in any case, been produced through another EOR
technique. In such a case, the public support for
a CCS-EOR project has no effect on the global
oil market, and the CO2-EOR oil is not a source of
incremental emissions since it displaces the same
oil from the same oil field. The EOR oil can then be
considered already decarbonized. Consequently,
formula (1), which includes the need to decarbonize
the EOR oil, gives a lower bound on the reduction in
global emissions.

If a CCS-EOR project is not vertically integrated,
there could be a need to allocate environmental
benefits between its capture and CO2-EOR
components. Two allocation rules can be
envisaged:

The amount of emission reductions attributed to
the facility where carbon capture occurs is E; the
EOR oil is carbon free on a well-to-wheel basis.

The amount of emission reductions attributed to
the facility where carbon capture occurs is $r \beta$;
the EOR oil has a per-barrel carbon intensity
equal to $u + f - \frac{v + g}{1 - \frac{\varepsilon d}{\varepsilon s}}$ on a well-to-wheel
basis.

If we consider that the aim of the CCS-EOR
project is to capture and store β tonnes of CO2
(implicitly viewing the EOR oil as a by-product),
we can compute the impact on global emissions
of capturing a tonne of CO2 and storing it through
EOR, defined as $e =$. This gives:

$$e = -r + \alpha \beta \left(u + f - \frac{v + g}{1 - \frac{\varepsilon d}{\varepsilon s}} \right)$$ \hspace{1cm} (2)

Formula (2) shows that capturing and storing a
tonne of CO2 with EOR reduces global emissions
when $u + f < \frac{r \beta}{\alpha} + \frac{v + g}{1 - \frac{\varepsilon d}{\varepsilon s}}$. This is a neat result that our
simple analytical framework allows us to derive.

The reduction in global CO2 emissions remains
equal to r only in the following two cases:

a. when storing CO2 has no effect on oil
 recovery (i.e., $\alpha = 0$);

b. when the well-to-wheel emissions of a
 barrel of EOR oil, $u + f$, equal those of the
 corresponding displaced oil, $-(v + g) \frac{\Delta s}{\alpha}$.
Environmental Benefits of CCS-EOR From Different Perspectives

Formula (2) quantifies the impact on global emissions of capturing and storing a tonne of CO₂, on a well-to-wheel basis. We will refer to it as the ‘well-to-wheel economic perspective.’ It is, however, relevant to contrast this perspective with others. If we adopt an accounting perspective instead of an economic one, we will ignore the oil displacement effect. The emissions attributable to a tonne of CO₂ stored would then simply be

\[-r + \frac{\alpha}{\beta}(u + f),\]

i.e., the reduction in emissions from capturing a tonne less the well-to-wheel emissions of the corresponding EOR oil.

Furthermore, oil producers may argue that they are responsible for decarbonizing their own emissions, but not those of their customers. The environmental benefits of CCS-EOR projects would then allow producers to market oil that was produced without emissions. We can determine the reduction in emissions from this narrower, upstream perspective, which only considers the impact on oil-upstream emissions of capturing and storing CO₂ through EOR. Both economic and accounting approaches apply also here.

Table 1 shows the reduction in emissions from capturing and storing a tonne of CO₂ calculated from these different perspectives.

<table>
<thead>
<tr>
<th>Perspective adopted</th>
<th>Reduction in emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream accounting perspective</td>
<td>[r - \frac{\alpha u}{\beta}]</td>
</tr>
<tr>
<td>Upstream economic perspective</td>
<td>[r - \frac{\alpha}{\beta}\left(u - \frac{v}{1 - \frac{g}{\varepsilon}}\right)]</td>
</tr>
<tr>
<td>Well-to-wheel accounting perspective</td>
<td>[r - \frac{\alpha}{\beta}(u + f)]</td>
</tr>
<tr>
<td>Well-to-wheel economic perspective</td>
<td>[r - \frac{\alpha}{\beta}\left(u + f - \frac{v + g}{1 - \frac{g}{\varepsilon}}\right)]</td>
</tr>
</tbody>
</table>

Source: Authors.
We propose here a first-cut calibration of formula (2). If an incentive to store CO₂ exists, the oil producer can balance the goal of producing more oil with that of storing more CO₂. The IEA⁷ (2015) therefore reports three different values for \(\frac{\alpha}{\beta} \), depending on the CO₂-EOR technique used:

- **Conventional EOR+:** a standard practice that maximizes oil production and minimizes CO₂ use, with additional monitoring and verification practices;
- **Advanced EOR+:** the co-exploitation of oil recovery and CO₂ storage, with larger amounts of CO₂ used;
- **Maximum storage EOR+:** the maximization of the long-term storage of CO₂ while achieving the same level of oil production as advanced EOR+.

We will compute the reduction in emissions per tonne of CO₂ stored for each value above.

We consider that the CO₂ stored is captured from the emissions of a gas power plant with a combined cycle. Using the values reported by the Global CCS Institute (2017), we assume that the efficiency of the plant is 51.5% without capture and 45.7% with capture, with a capture rate of 90%. For the emissions released by the transport of the CO₂ from the point of capture to the EOR field, we use the estimate of 1 kilogram (kg) emitted per tonne transported derived by Azzolina et al. (2017) for an average CO₂ pipeline distance of 500 kilometers. Based on the formula derived in footnote 5, noting that the efficiency rate is the inverse of an energy intensity, we find

\[
 r = \frac{1}{0.515} - (1 - 0.9) \frac{1}{0.457} - 0.001 = 0.874
\]

For CO₂ equivalent (-eq) emissions of upstream, midstream and downstream oil activities, we use estimates⁸ from the most recent literature. For the emissions related to the displaced oil, we use Masnadi et al. (2021), who estimate the upstream carbon intensity of the crude oil displaced from the global market by small demand shocks. The oils they identify as marginal are, presumably, those that the CCS-EOR projects would also displace. In their small shock scenario, they estimate⁹ that the volume-weighted average carbon intensity of the displaced marginal crudes is 0.08 tonnes of CO₂-eq per barrel, whereas they report an average carbon intensity of 0.05 tonnes of CO₂-eq per barrel for the global production of crude oil. We therefore use 0.08 tonnes of CO₂-eq per barrel for \(v \).

Masnadi et al. (2021) also find that 96% of the displaced oil is heavy crude. Gordon et al. (2015) report midstream and downstream emissions for two crudes categorized as heavy (Angola’s Kuito and Brazil’s Frade). We set \(g \) equal to the average quantity of emissions of the two crudes.

All assumptions and their sources are summarized in Table 2.

With our calibration, a barrel of EOR oil displaces half a barrel of oil from the global market, since

\[
 \frac{1}{1 - \frac{1}{0.001}} = 0.51.
\]

The displacement therefore generates a saving in CO₂-eq emissions equal to (0.50 + 0.08) \times 0.5 = 0.29 tonnes per barrel of EOR oil.

Table 3 shows the values obtained with our first-cut calibration for the reduction \(e \) in global emissions from the well-to-wheel economic perspective. It also shows the breakdown of the reduction into the three effects that add up in formula (2). Since the second effect - the increase in emissions due to the
Table 2. Parameters considered for calibration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in emissions from capturing a tonne of CO₂</td>
<td>r</td>
<td>0.874 Authors’ calculation based on Global CCS Institute (2017), Azzolina et al. (2017)</td>
</tr>
<tr>
<td>EOR oil produced per tonne of CO₂ stored</td>
<td>αβ</td>
<td>Conventional EOR+ 3.33 barrel/tonne Advanced EOR+ 1.67 barrel/tonne Maximum-storage EOR+ 1.11 barrel/tonne IEA (2015)</td>
</tr>
<tr>
<td>Upstream emissions per barrel of EOR oil</td>
<td>u</td>
<td>0.07 tonne/barrel Nagabhushan and Waltzer (2016), Santos et al. (2021)</td>
</tr>
<tr>
<td>Upstream emissions per barrel of displaced oil</td>
<td>v</td>
<td>0.08 tonne/barrel Masnadi et al. (2021)</td>
</tr>
<tr>
<td>Midstream and downstream emissions per barrel of EOR oil</td>
<td>f</td>
<td>0.47 tonne/barrel IEA (2015) – based on Gordon et al. (2015) (Conventional oil)</td>
</tr>
<tr>
<td>Midstream and downstream emissions per barrel of displaced oil</td>
<td>g</td>
<td>0.50 tonne/barrel Gordon et al. (2015) – using Masnadi et al. (2021)</td>
</tr>
<tr>
<td>Price elasticity of global oil supply*</td>
<td>εs</td>
<td>0.056 Caldara et al. (2019)</td>
</tr>
<tr>
<td>Price elasticity of global oil demand</td>
<td>εd</td>
<td>–0.055 Caldara et al. (2019)</td>
</tr>
</tbody>
</table>

*We here consider short-run elasticity values. The use of long-run values, instead, could be debated. If the two long-run values are close, their ratio remains close to -1, and our numerical results do not materially change. Source: Authors.

Table 3. Values obtained for the reduction in global emissions (tonnes of CO₂-eq per tonne of CO₂ stored), well-to-wheel economic perspective.

<table>
<thead>
<tr>
<th></th>
<th>Conventional EOR+</th>
<th>Advanced EOR+</th>
<th>Maximum storage EOR+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in emissions due to capture and storage</td>
<td>-0.87</td>
<td>-0.87</td>
<td>-0.87</td>
</tr>
<tr>
<td>Increase in emissions due to EOR oil produced</td>
<td>1.80</td>
<td>0.90</td>
<td>0.59</td>
</tr>
<tr>
<td>Reduction in emissions due to the oil displaced</td>
<td>-0.97</td>
<td>-0.49</td>
<td>-0.32</td>
</tr>
<tr>
<td>Total impact (e)</td>
<td>-0.05</td>
<td>-0.46</td>
<td>-0.60</td>
</tr>
</tbody>
</table>

Source: Authors.

EOR oil produced - is accounted for, the resulting reduction e implicitly assumes that the EOR oil is fully decarbonized on a well-to-wheel basis. The reduction e in global emissions, expressed in tonnes of CO₂-eq per tonne of CO₂ stored, is −0.05 for conventional EOR+, −0.46 for advanced EOR+,
Illustrative Calibration

and -0.60 for maximum-storage EOR+. In the three cases, CCS-EOR remains a mitigation technology since capturing and storing a tonne of CO$_2$ reduces global emissions, even after the full decarbonization of the additional EOR oil produced. The reduction in global emissions is small with the conventional EOR+ business model due to the larger volume of EOR oil to decarbonize.

IEA’s (2015) numerical simulation yields a much higher estimate of -0.63 for the reduction in emissions with conventional EOR+. Two main reasons explain this difference: the elasticity values implicitly embedded in the large-scale model used for their study, and the fact that they do not account for the emissions relating to the capture of CO$_2$. The IEA reports that, according to their modeling results, a barrel of EOR oil displaces 0.8 barrels of oil from the global market. According to our analytical approach, this amounts to assuming that the price elasticity of supply is four times the price elasticity of demand. This is inconsistent with the values reported, for instance, by Caldara et al. (2019), as shown in Table 2. Moreover, since the IEA only considers the CO$_2$-EOR process, they implicitly assume $r = 1$, i.e., the volume of CO$_2$ stored corresponds to an equivalent reduction in emissions.

Note that from a well-to-wheel accounting perspective, which ignores the effect of the produced EOR oil on the global market equilibrium, CCS with conventional EOR+ would not be a mitigation technology because capturing and storing a tonne of CO$_2$ would result in an increase in emissions since $3.33 \times (0.47 + 0.07) - 0.87 = 0.93$ tonnes of CO$_2$.

How Much Oil Can be Decarbonized by Capturing and Storing a Tonne of CO₂?

Let us assume that the CCS-EOR projects considered above are undertaken by an oil producer who attributes the full environmental benefits of capturing CO₂ to the EOR oil. This could be the case, for instance, if the CO₂ is captured by DAC installations. On a well-to-wheel basis, the quantity of global CO₂ emissions attached to a barrel of EOR oil, i.e., its marginal CO₂ content, is then given by \(\frac{E}{\alpha} \). Using formula (1) we have

\[
E = \frac{-r}{\alpha} + u + f - \frac{v + g}{1 - \frac{\varepsilon_d}{\varepsilon_s}}
\]

(3)

Formula (3) can be interpreted as follows: The marginal CO₂ content of a barrel of EOR oil is equal to its well-to-wheel emissions less those of the oil it displaces, and the CO₂ stored per barrel of EOR oil.

With our calibration, the marginal emissions content of EOR oil, in tonnes of CO₂-eq per barrel, is -0.05 for conventional EOR+, -0.35 for advanced EOR+, and -0.65 for maximum-storage EOR+.

EOR oil therefore has a negative CO₂ content. However, the oil producer could wish to allocate the benefits of capturing and storing CO₂ to a larger quantity of oil that would end up with a zero-carbon content.

We can determine the total amount of oil that the producer could label as carbon free. To do so, we equate the (negative) emissions attributable to the CCS-EOR projects, \(E \), to those from \(\gamma \) barrels of conventional oil already produced by the oil producer, \((u + f)\gamma\). The volume of oil \(\gamma \) is therefore given by

\[
E = (u + f)\gamma = 0
\]

The interpretation of this calculation is that, in theory, the oil producer can sell \(\alpha + \gamma \) barrels of oil with a certificate stating that consuming this oil has zero impact on global emissions.

Using formula (1) we solve for \(\gamma \) to obtain

\[
\gamma = \frac{r + \alpha \left(\frac{v + g}{1 - \frac{\varepsilon_d}{\varepsilon_s}} \right)}{u + f}
\]

Capturing and storing a tonne of CO₂ decarbonizes the total quantity of oil \(\frac{\alpha + \gamma}{\beta} \), with

\[
\frac{\alpha + \gamma}{\beta} = \frac{r + \alpha \left(\frac{v + g}{1 - \frac{\varepsilon_d}{\varepsilon_s}} \right)}{u + f}
\]

(4)

A tonne of CO₂ stored, therefore, offsets the well-to-wheel emissions of \(\frac{r + \alpha \left(\frac{v + g}{1 - \frac{\varepsilon_d}{\varepsilon_s}} \right)}{u + f} \) barrels of oil.

Table 4 summarizes the formulas and calibrated values giving the quantity of decarbonized oil per tonne of CO₂ stored from the different perspectives introduced in Section 4.

We can conclude that considering the impact of the EOR oil on the global market equilibrium substantially influences the results. With conventional EOR+, storing a tonne of CO₂ allows the well-to-wheel decarbonization of 3.41 barrels of oil when this impact is accounted for, as opposed to only 1.62 barrels when it is ignored. When considering upstream emissions only, 14.4 barrels of oil are decarbonized from an economic perspective. Interestingly, due to the oil-displacement effect, the higher the volume of EOR oil produced per tonne of CO₂ stored, the larger the volume of oil that can be decarbonized.
How Much Oil Can be Decarbonized by Capturing and Storing a Tonne of CO$_2$?

Table 4. Barrels of decarbonized oil per tonne of CO$_2$ stored.

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Formula</th>
<th>Calibrated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream accounting perspective</td>
<td>$\frac{r}{u}$</td>
<td>12.48</td>
</tr>
<tr>
<td>Upstream economic perspective</td>
<td>$r + \frac{\alpha}{\beta} \left(\frac{v}{1 - \frac{x_d}{x_p}} \right)$</td>
<td></td>
</tr>
<tr>
<td>Conventional EOR+</td>
<td>14.40</td>
<td></td>
</tr>
<tr>
<td>Advanced EOR+</td>
<td>13.45</td>
<td></td>
</tr>
<tr>
<td>Maximum storage EOR+</td>
<td>13.12</td>
<td></td>
</tr>
<tr>
<td>Well-to-wheel accounting perspective</td>
<td>$\frac{r}{u + f}$</td>
<td>1.62</td>
</tr>
<tr>
<td>Well-to-wheel economic perspective</td>
<td>$r + \frac{\alpha}{\beta} \left(\frac{v + g}{1 - \frac{x_d}{x_p}} \right)$</td>
<td></td>
</tr>
<tr>
<td>Conventional EOR+</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>Advanced EOR+</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>Maximum storage EOR+</td>
<td>2.21</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors.
Implications for the Global Energy Transition

This paper has adopted an economic approach that helps to clarify the potential impact on global emissions of capturing CO₂ and storing it through EOR. It has produced analytical formulas from different perspectives (economic vs. accounting; well-to-wheel vs. oil upstream). For illustrative purposes, we have proposed a first-cut numerical calibration of our results.

Our analysis shows that CCS-EOR technology has the potential to mitigate global emissions. However, after accounting for the need to decarbonize the EOR oil produced, the reduction in emissions is much less than the stored quantity of CO₂. Our illustrative calibration suggests that capturing and storing a tonne of CO₂ through EOR reduces total global emissions by an amount ranging between 0.05 and 0.60 tonnes, depending on the EOR technique used. The higher the volume of EOR oil produced per tonne of CO₂ stored, the bigger the need for decarbonization, with lower resulting reduction in emissions. For the three CO₂-EOR techniques considered, CCS-EOR allows producers to sell the EOR oil decarbonized on a well-to-wheel basis while, in addition, generating a reduction in global emissions. If this reduction in emissions is also used to market oil decarbonized on a well-to-wheel basis (oil-upstream basis), capturing a tonne of CO₂ and storing it with conventional EOR+ allows for the decarbonization of 3.41 barrels of oil (14.4 barrels of oil). Our result captures the effect of the additional oil produced by CO₂-EOR on the global oil market. We provide analytical formulas that allow for quantifying the oil displaced by EOR oil and the resulting consolidated environmental benefits.

The fact that CCS-EOR projects reduce global CO₂ emissions by much less than the quantity of CO₂ captured (after accounting for the decarbonization of the EOR oil) has policy implications, since fiscal incentives granted by governments to support CCS-EOR as a climate-change mitigation technology should be sized accordingly. However, since CCS-EOR projects benefit from the extra oil revenues generated, limited incentives may be sufficient to render these projects profitable and leverage them to upscale CCS technologies.

In this regard, we can examine the extent to which our calculation is consistent with the tax credit numbers provided by the revised Section 45Q, “Credit for Carbon Oxide Sequestration,” in the 2022 United States Inflation Reduction Act. A tonne of CO₂ captured from industrial facilities or power plants and used for EOR generates a tax credit of $60, while if the tonne is stored in a saline reservoir it generates a credit of $85 (Financial Times 2022). For a tonne of CO₂ captured by DAC projects, the corresponding tax credits are $130 and $180, respectively. The legislation is heavily influenced by political negotiations, and the subsidy might have been tailored to the economics of CCS-EOR projects. Nevertheless, the ratios 60 over 85 (=71%) and 130 over 180 (=72%) could implicitly signal that the Biden administration considers that storing a tonne of captured CO₂ through EOR reduces global emissions by 30% less compared to storing it in a saline reservoir. Using the notations introduced in the paper, this amounts to assuming that the ratio e_F is below 0.7, which is in the upper end of our calculation (this ratio is, for instance, equal to 0.53 with advanced EOR+13). The Inflation Reduction Act’s tax credit is, therefore, slightly higher than the amount that our calculations would justify.

As many countries around the world are embarking on net-zero emissions (NZE) targets by the second half of this century, all technology options should be considered and, whenever relevant,
encouraged. Since it has the potential to reduce global emissions, CCS-EOR must be recognized as part of the solution for achieving a net-zero world. In addition, coupling DAC technologies with CO₂-EOR could accelerate the adoption of DAC technologies, a critical component of meeting the challenge of achieving NZE. Transitioning to a net-zero world implies a fundamental restructuring of the economy and energy systems. The marginal analysis developed in the paper will remain valid along the transition path, but the value of the parameters appearing in our analytical formulas might vary substantially throughout time due to technology progress and structural changes in the global oil market.

This note adopts a purely economic perspective and does not discuss questions relating to geological or monitoring conditions. Our calibration should be refined and complemented by sensitivity analyses with respect to elasticity values, since these values are not precisely known. In addition, emissions relating to the manufacturing of equipment used for CCS-EOR may have to be added to perform a full lifecycle assessment. We recommend these considerations for further research.
As noted by IRENA (2021), the largest experience in storing CO$_2$ is in EOR, which has a very low risk of CO$_2$ leakage.

2 See Sekera and Lichtenberger (2020) for a review of lifecycle assessment studies for CCS-EOR.

3 The term ‘well-to-wheel’ refers here to the amount of greenhouse gas emissions generated by producing, processing, distributing and using a barrel of oil.

4 The IEA (2015) assumes that 99% of the CO$_2$ delivered to the EOR operator remains stored. Hill et al. (2013) report that fugitive emissions released during CO$_2$ re-injection cycles amount to less than 0.3% of the total volume of CO$_2$ used for the Elk Hills CO$_2$ project. Experience with EOR in the Weyburn field, with large-scale simulation over 5,000 years, suggests that it is well suited for long-term subsurface storage of CO$_2$ (Preston et al. 2005). Here we do not consider possible changes in the relative quantities of CO$_2$ stored and EOR oil produced throughout time (see, for instance, Nunez-Lopez and Moskal (2019) for a discussion of the question) so that α and β are taken to be time-invariant.

5 Consider a power or industrial plant and assume that the quantity of fuel required to produce a unit of output is i_w with carbon capture and i_{wo} without carbon capture. The carbon capture rate is c and the CO$_2$ emitted per unit of fuel is l. For a unit of output, the emissions without capture amount to li_{wo}, whereas the emissions with capture amount to li_w, of which cli_w is captured. The reduction in emissions is therefore $li_{wo} - (1 - c)li_w$. For a tonne captured, the reduction in emissions is $(li_{wo} - (1 - c)li_w)/cli_w$. If o represents the emissions generated by the transportation of a tonne of captured CO$_2$ to the oil field, we have: $r = (lw_{o} - (1-c)lw_{w})/cli_{w} - o$.

6 This parameter is often referred to as the upstream carbon intensity and includes emissions from well to refinery gate.

7 See also https://www.iea.org/commentaries/can-CO$_2$-eor-really-provide-carbon-negative-oil, which reports an actual range of 1.67-3.33 barrels of EOR oil per tonne of CO$_2$ stored in the United States.

8 Note that existing lifecycle analyses (LCA) are not necessarily comparable since the boundary set for the accounting of emissions can vary across studies.

9 Masnadi et al. (2021) consider three possible market structures. The results reported here are valid when competition is assumed to be either perfect or oligopolistic.

10 We here consider short-run elasticity values. The use of long-run values, instead, could be debated. If the two long-run values are close, their ratio remains close to -1, and our numerical results do not materially change.

11 Attributing all the environmental benefits generated by a CCS-EOR project to the oil produced implies that these benefits cannot be attributed to the point of capture (otherwise there would be double counting). With DAC, there is no output to decarbonize at the point of capture, so allocating the benefits to the oil produced is a straightforward choice.

12 For an analysis of the potential effects of 45Q on CCS-EOR deployment in the US see Edmonds et al. (2020).

13 The ratio to equate to 0.7 is $\frac{e}{r-w}$, where w is the emissions from transporting the captured tonne of CO$_2$ and storing it in the saline reservoir. This implies $\frac{e}{r} < 0.7$.

14 With the conventional EOR+ business model, which generates the lowest decrease in emissions, the ratio $\frac{e}{r}$ would be equal to 0.7 if a barrel of EOR oil were assumed to push 0.8 barrels of existing supply out of the global market (instead of the 0.5 barrels we calculated).
References

Jacobs, Justin. 2022. “‘Put up or Shut Up’: Can Big Oil Prove the Case for Carbon Capture?” *Financial Times*, October 20. https://www.ft.com/content/b8d6848d-1e8a-4c57-b65b-52105b48b178.

About the Authors

Hossa Almutairi

Dr. Hossa Almutairi is a Fellow III at KAPSARC, Saudi Arabia. During the Saudi G20 Presidency, she served as the Sherpa of Think20’s (T20)—the research and policy advice network for the G20—as well as the head of the T20 Secretariat. She was the lead co-chair of the T20 task force, “Sustainable energy, water and food systems.” Prior to joining KAPSARC, Hossa was a faculty member at the University of Wilfrid Laurier, Canada. Her research interests include energy economics, behavioral economics, the oil market, climate policies and sustainable development.

Axel Pierru

Dr. Axel Pierru is the director of the Energy Macro and Microeconomics program at KAPSARC, Saudi Arabia. He has also served as KAPSARC’s Interim Vice President of Research. Axel joined KAPSARC in 2011, after spending 15 years at IFP Energies Nouvelles in France. His research focus is on energy economics, policy, finance, and oil pricing. He has co-authored more than 40 papers in peer-reviewed journals.
About the Project

This research forms part of the Shadow Pricing of Resources project. In a standard economics framework, markets are considered to provide an efficient way of allocating resources, and, as a consequence, the market price is used to signal the welfare effects. However, there are many goods and services for which there are no markets, and even for some market-traded goods and services, the market price may not reflect the 'real value' due to market failures such as externalities, resource scarcity or economic distortions. Such a price-value divergence can be captured by calculating shadow prices of resources or opportunity costs. Making decisions based on the wrong opportunity costs or the value of these resources could lead to over- or underinvestment in projects. Including shadow prices of externalities into project assessments provides valuable information about the tradeoffs between the costs and benefits of reducing their environmental impact.