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Key Points
Research has shown that when combined in a mobility-on-demand (MOD) 
framework, automation, carpooling, and electrification have the potential for 
theoretically large emission reductions. However, there is insufficient research 
regarding the consumer preferences for and behavioral responses to this 
vision of transportation in the future. In this paper, we use choice experiment 
data collected from an online ride-hailing survey to quantify the consumer 
preferences for these technologies.

•  Our results suggest that there are major barriers to 
consumers’ willingness to ride in such vehicles.

•  We find that respondents require large discounts to 
ride in driverless vehicles or to carpool with other 
passengers, even when ride times are held constant. 
Although they are open to riding in electric vehicles 

 (EVs) and hybrid electric vehicles (HEVs), they are not 
willing to pay more to do so.

•  Safety concerns and an unwillingness to ride with 
strangers appear to be the primary drivers of 
these preferences.
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1. Introduction
A major focus of current transportation research is mobility on demand (MOD) 
or mobility as a service. The visualization of such services often conjures a 
picture of a self-driving car that appears futuristic and that can be ordered via 
a cell phone. In the framework of Sperling (2018), the vision centers on three 
pillars or “revolutions:” electrification, pooling, and automation. Ride-hailing 
can be considered a foundation for this framework.

The use of ride-hailing services has increased 
substantially in the last decade. Uber, which started in 
2009, was available in 404 cities worldwide in 2016 
(Li et al., 2016) but is now present in 10,000 cities.1 Ola, 
which was founded in India in 2010, is now available in 
more than 200 cities.2 Didi Chuxing, which launched in 
China in 2012, now serves more than 550 million riders 
in 16 countries.3 The ridership of vehicles from these and 
other platforms will likely continue to grow in both the 
developed and developing worlds. From 2015 to 2018, 
the share of American adults who had used a ride-hailing 
service increased from 15% to 36%.4 Autonomous vehicles 
(AVs) could revolutionize ride-hailing and MOD, especially 
given their projected lower cost per mile (e.g., Bösch et 
al., 2018). In fact, AVs are projected to increase mobility 
access for elderly people and those with disabilities 
(Fagnant and Kockelman 2015; Harper et al. 2016). 
However, the lower cost will likely increase usage, vehicle 
miles traveled (VMT), and congestion (Oh et al., 2020; 
Wadud, MacKenzie, and Leiby 2016). Therefore, fleet 
electrification and carpooling (i.e., multiple passengers 
with similar origins and destinations sharing a vehicle) will 
be crucial for realizing environmental benefits such as 

emission reductions (Chen, Kockelman, and Hanna, 2016; 
Fagnant and Kockelman, 2018; Jenn, 2020).

There is a relatively large scope of engineering and 
operations research on AV usage, as well as algorithm 
optimization and carpooling for emission reductions 
(e.g., Hasan, Van Hentenryck, and Legrain 2020; Liu et 
al. 2019). However, while the theoretical impacts and 
emission reductions have been quantified, relatively 
little is known about the behavioral component, which 
will determine how consumers use these technologies 
in practice. In this paper, we use the results of a choice 
experiment embedded in an online survey to investigate 
the consumer preferences for ride-hailing, particularly in 
the context of AVs, electric vehicles (EVs), and carpooling. 
Specifically, we utilize the results of the choice experiment 
to estimate discrete choice models, run simulations to 
assess consumers’ price sensitivity to ride-hailing, and 
quantify the consumer preferences for riding in AVs, EVs, 
and carpool vehicles. We explore the heterogeneity 
in preferences and assess the overall implications for 
the future ridership of an electric and autonomous 
on-demand fleet.
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2. Literature Review
AVs are expected to lower the per-mile costs of ride-hailing. Bösch et al. 
(2018) find that labor accounts for nearly 90% of the per kilometer costs 
of a taxi ride in Switzerland and that automating taxis would reduce the 
per kilometer costs by nearly 85%. Chen, Kockelman, and Hanna (2016) 
estimate that in the USA, the total per-mile cost of a shared vehicle, an EV, 
and AV ($0.42-$0.49) would be on par with the per-mile costs of private 
vehicle ownership for lower-mileage households. Lower costs per mile and 
increased access combined with “dead-heading” (miles without passengers) 
are projected to increase VMT. Oh et al. (2020) estimate that in Singapore, a 
moderate adoption of automated MOD would increase VMT by 13%. Fagnant 
and Kockelman (2018) estimate that the VMT in Austin, Texas, would increase 
by 8% without dynamic ride-sharing or carpooling passengers. Similarly, 
Wadud, MacKenzie, and Leiby (2016) estimate a 2%-10% increase in VMT 
across the USA, and Harper et al. (2016) estimate a 14% annual increase in 
VMT in the USA. Thus, despite AVs’ potential for emission reductions from 
eco-driving, vehicle right-sizing, and de-emphasized performance (Liu et al. 
2019; Wadud, MacKenzie, and Leiby 2016), without electrification and pooling, 
the automation of ride-hailing could actually lead to an increase in carbon 
dioxide emissions. Wadud, MacKenzie, and Leiby (2016) find that, depending 
on competing effects (e.g., changes in travel demand, the type of fuel, vehicle 
operation), emissions and energy use could either halve or double.

Meanwhile, the optimization of passenger matching 
algorithms has shown that carpooling can lead to 
substantial emission reductions. For example, Hasan, 
Van Hentenryck, and Legrain (2020) show that 
carpooling can lead to a 57% decrease in vehicle usage 
and a 46% decrease in VMT, with only a 22% increase in 
ride times. Electrification can also substantially reduce 
transport emissions, particularly in the ride-hailing 
context, especially when combined with a low-carbon 
grid. Jenn (2020) shows that in California, switching a 
ride-hailing vehicle from an internal combustion engine 
(ICE) vehicle to an EV results in three times greater 
reductions in emissions than switching a private ICE 
vehicle to an EV due to the greater usage intensity of 
ride-hailing vehicles.

Various studies have explored the general consumer 
interest in AVs. To explore the preferences for and 
attitudes toward AVs, Nazari, Noruzoliaee, and 
Mohammadian (2018) use stated preference data from 
a survey in the state of Washington to estimate ordered 
probit models. They find that people with “green travel 
patterns,” as well as those with a positive preference  
for MOD technologies, are more likely to be interested  
in AVs. However, safety concerns hinder people’s  
interest in AVs. They also find that respondents with 
longer commutes are more likely to be interested in AVs. 
However, those with larger daily VMT do not favor AVs  
for other day-to-day trips, presumably because people 
could utilize their commute to work productively. Asgari 
and Jin (2019) survey drivers in major metropolitan areas 
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in the USA, asking how much more they are willing to pay 
for various automation features in their private vehicle. 
They find that technology-savvy respondents were more 
likely to be interested in AV adoption, while those with 
a “joy of driving” were the least interested. Pettigrew, 
Dana, and Norman (2019) use survey data from Australia 
to estimate the latent profiles of AV adopters. They 
categorize respondents into five classes, finding that 29% 
would not adopt AVs and that 14% would be “first movers” 
and be highly interested in AV adoption. The authors use 
sociodemographic and attitudinal variables to segment 
respondents. Wali, Santi, and Ratti (2021) analyze data 
from the 2017 California Vehicle Survey and find that 
respondents who participate in carshare and rideshare 
programs, as well as those who more frequently utilize 
public transportation, have a greater affinity for AVs. They 
also find that EV ownership is positively correlated with 
AV affinity.

Independent of electrification and automation, the 
adoption of ride-hailing could impact greenhouse gas 
(GHG) emissions; for example, it could impact vehicle 
ownership and VMT. Ward et al. (2019) use a difference-
in-differences approach and find that the entry of Uber 
and Lyft into markets in the USA from 2005 to 2015 led 
to a 3% decrease in per capita vehicle registrations and 
likely led to a decrease in emissions. Subsequently, Ward, 
Michalek, and Samaras (2021) find that these ride-hailing 
services led to a 50%-60% reduction in local air pollutants 
due to the avoidance of “cold starts” and because the 
vehicles were newer and cleaner. However, they also find 
that the extra miles driven without passengers (i.e., “dead-
heading”) led to a 20% increase in fuel consumption 
and GHG emissions. They note that this issue could be 
mitigated through electrification and carpooling.

Another important factor for the emission-related benefits 
of ride-hailing is how it affects public transportation. 
Regarding this topic, the literature is somewhat mixed. For 
example, while some studies have shown that ride-hailing 
has replaced the market share of public transportation to 
a certain extent (e.g., Graehler 2019), others have shown 
that ride-hailing has increased public transit use in certain 
contexts (e.g., Berrebi 2020; Hall et al. 2019) because 
it helps solve the “last mile” problem (Huang 2021). 
However, others find no significant impact (e.g., Boisjoly  
et al. 2018).

Several studies have focused on ride-hailing preferences. 
In a survey of Americans, Naumov and Keith (2019) ask 
respondents to choose between a private ride, such as 
UberX or Lyft, and a pooled ride, such as UberPOOL or 

LyftLine. They find that consumers prefer less expensive 
trips and that lower-income riders are more likely to 
choose the pooled ride. Asgari, Jin, and Corkery (2018) 
employ a choice experiment of major metropolitan areas 
in the USA where respondents choose between driving 
a private vehicle, using an exclusive on-demand service, 
or using a shared on-demand service with varying travel 
times, travel costs, and the potential for multitasking. 
They find that monthly travel cost savings of $72 or time 
savings of 16 minutes per trip would persuade half the 
sample to switch from private vehicles to ride-sharing. 
Furthermore, they find that while most respondents prefer 
exclusive services over those shared on demand, regular 
transit users are more open to shared rides.

In this paper, we focus on the intersection of ride-
hailing, automation, electrification, and carpooling. To 
complement the literature on the potential impacts 
and benefits of these technologies, we investigate the 
behavioral aspects of this future vision of transport. 
Specifically, we quantify the consumer preferences for 
these different technologies. While there is research on 
the consumer preferences for each of these individual 
technologies, few studies examine the intersection 
of ride-hailing and AVs, and no studies explore the 
intersection of all four components (i.e., ride-hailing, 
automation, electrification, and carpooling).

A small number of recent papers explore the intersection 
between the consumer preferences for ride-hailing, 
carpooling, and AVs (but not EVs). In a choice experiment 
conducted by Lavieri and Bhat (2019), respondents are 
asked to choose between a private self-driving cab 
service and a shared service, with varying travel times, 
costs, and additional passengers. Respondents are also 
told to assume that all rides involve self-driving vehicles. 
They use choice models and find that respondents 
are less sensitive to carpooling with a stranger while 
commuting than to carpooling with a stranger during a 
leisure trip. Furthermore, they conclude that the additional 
travel time caused by carpooling is more of a barrier to 
carpooling than the presence of a stranger. Given that all 
rides are assumed to be self-driving, they do not quantify 
AV preferences.

Irannezhad and Mahadevan (2022) survey Australians and 
ask how likely they are to choose carpooled and self-
driving ride-hailing services for different types of trips, 
assuming that carpooling may reduce costs by as much 
as 50%. The respondents then rank how important time 
delays, priority drop-off, and walking distance are to their 
various trip types and how much of a discount they would 
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require to share their ride. The results show that frequent 
transit users are more likely to use ride-hailing services, 
people with “tech-centric” and “anti-driving” attitudes are 
more likely to choose pooled rides as well as AVs, and 
nearly half of the respondents would not choose an AV 
even with a 50% price discount.

Webb, Wilson, and Kularatne (2019) explore the consumer 
preferences in Queensland, Australia, for substituting 
50%-80% of private vehicle trips with shared vehicle, EV, 
and AV trips. These authors vary the cost per kilometer, 
the annual number of accidents in the state, increases 
in urban space due to decreased parking space, and 
extra travel time due to congestion. Only 16% of survey 
respondents chose the status quo option of continuing 
100% private vehicle use, and in this regard, the most 
motivating attribute was cost.

Sweet (2021) uses a choice experiment of Canadians 
in which respondents choose from five different 
transportation modes: driving in a private car, cycling, 
riding in an on-demand car, taking transit plus an 
on-demand car, and taking transit plus walking. The 
on-demand cars may or may not have a driver or 
additional passengers, the transit may or may not be a 
driverless shuttle, and the travel time and cost also vary 
across options. The estimated choice models suggest  
that carpooling with another passenger is associated  
with a $1-$4 penalty. However, the estimated coefficients 
for driverless rides are not statistically significant, which  
is perhaps due to limited power given the large number  
of estimated coefficients. While Sweet’s (2021) paper  
is the closest to ours methodologically (utilizing both a 

choice experiment and estimating mixed logit models), 
it better characterizes preferences across modalities. 
In contrast, our paper better characterizes ride-hailing 
preferences and more richly quantifies tradeoffs between 
price, carpooling, and vehicle technology, including EVs 
and hybrid EVs (HEVs), which are not covered in Sweet 
(2021). Furthermore, we obtain more precise coefficients 
of driverless and autonomous attributes and more fully 
characterize the distribution of these preferences and 
their interactions with other preferences.

Unlike the literature, our paper examines the preferences 
for ride-hailing, automation, electrification, and carpooling, 
all of which are combined in a single context that better 
reflects the automated, carpooled, and electrified future 
vision of transport. Furthermore, we use an experimental 
approach combined with choice models rather than the 
descriptive surveys and summary statistics used by the 
majority of studies. Doing so allows us to quantify the 
willingness to pay (WTP) for various technologies and 
attributes and to perform simulations. We also focus 
exclusively on ride-hailing decisions (i.e., substitution 
across ride-hailing options) rather than the decision to 
ride-hail (i.e., substitution across transport modes). Finally, 
the literature focuses more on sociodemographic and 
psycho-behavioral factors that influence ridership (i.e., 
who will likely use these technologies), while our paper 
focuses more on fully characterizing the preferences 
and interactions between ride types. As one of the first 
papers to focus on the behavioral side of the automated, 
carpooled, and electrified MOD vision of the future, we 
offer several key takeaways regarding how future markets 
may develop, as well as anticipated barriers.
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3. Data
In May 2022, we developed and deployed a national online survey of 750 
adults in the USA who had used a ride-hailing service such as Uber or Lyft; 
the sample is representative in terms of age, income, and race/ethnicity.5 
On average, the respondents took just over seven minutes to complete 
the survey, with a median completion time of six minutes. An introductory 
script included a consequentiality statement to reduce hypothetical bias 
(Lloyd-Smith, Adamowicz, and Dupont 2019; Oehlmann and Meyerhoff, 
2017).6 After two screening questions were asked to ensure that each 
respondent was at least 18 years of age and had previously used a ride-
hailing service,7 the survey collected basic sociodemographic information, 
as well as the respondents’ experiences with ride-hailing services. Next, 
the survey introduced and administered a choice experiment in which the 
respondents selected their preferred ride out of two ride-hailing options, with 
an outside option to select neither. Several follow-up questions sought to 
better understand the respondents’ motivations for their choices. The survey 
concluded with a short series of attitudinal questions.

The choice experiment was divided into two parts: short 
trips and long trips. The respondent was first told the 
following: “Now, suppose that you have decided to use a 
ride-hailing service (Uber, Lyft, or other) on a relatively short 
trip. For example, this trip could be to a restaurant, bar, or 
friend’s place.” The trips varied in terms of price, ride time, 
carpooling, type of vehicle, and self-driving technology.8 
These attributes and their levels are shown in Table 1. The 
vehicle type options included HEVs, battery-powered 
electric vehicles (i.e., EVs), or neither (i.e., standard ICE 
vehicles). The self-driving technology was fully autonomous 
(driverless), partially autonomous (self-driving technology 
with a driver in the car), or neither. Notably, in our modeling, 

this attribute was split into two: autonomous (whether the 
vehicle uses self-driving technology) and driverless. After 
each of these attributes was introduced, the respondents 
were asked two comprehension questions and a 
consequentiality question.9 Both of the comprehension 
questions were answered correctly by more than two-
thirds of the respondents. Those who selected the wrong 
answer were shown why they were wrong and given the 
correct answer. Next, the respondents were shown three 
choice sets. In each choice set, they were asked to select 
their preferred ride, with an option to select neither.10 An 
example choice set is shown in Figure 1.
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Table 1. Choice experiment attributes and levels.

Attribute Type

Vehicle HEV, EV, neither

Self-driving technology Fully autonomous/driverless (self-driving with no driver), 
partially autonomous (self-driving with a driver), neither

Carpooling (Number of stops to pick up an 
additional rider)

0, 1, 2

Short ride

Ride time (minutes) 7, 9, 11, 13

Price (dollars) 12, 14, 16, 18, 20

Long ride

Ride time (minutes) 35, 45, 55, 65

Price (dollars) 55, 65, 75, 85, 95

Notes:

The ride time and price are based on the following information. Jones (2023) states that “the average Uber/Lyft trip distance is 5–6 miles and takes 
around 10 minutes to complete”; additionally, “long trips are mostly four times or five times the average ride distance and take much longer to complete. 
For example, we can consider a trip ‘long’ when the distance covered is over 10 miles or takes over 45 minutes to complete.” Forbes (2015) states that 
“according to Sherpashare, a company that sources ride data and provides driver analytics, the average Uber ride is 5.41 miles.” Lisa (2021) states that 
“the average Uber or Lyft fare used to be predictable and steady — about $25–$26 from mid-2018 through the runup to the virus, according to Statista.” 
Finally, assuming a driving speed of 20 miles per hour (to account for stops) results in an average fare of $1.57 per minute ($25.5/5.41 mi*20 mi/60 
minutes=$1.57 per minute). In the choice experiment, the average per-minute cost is $1.60 ($16/10=$1.6) for short trips and $1.50 for long trips ($75/50=1.5).

Source: KAPSARC.
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HEV

Trip A Trip B

Hybrid

Driverless

1 stop

9 minutes

Electric
self-driving

with a driver

No stops

7 minutes

$16 $12

Figure 1. Example choice set

The respondents were then asked to envision a scenario: 
They had decided to hail a ride for a somewhat longer 
trip, such as to an airport or a concert/sports venue. They 
were then shown three more choice sets with longer ride 
times and higher price points, as shown in Table 1.

The choice experiment was designed using Ngene 
software. The experimental design was based on the 
following utility (vi) function for choosing ride i:

vi = β1 partiali + β2 autonomousi + β3 HEVi + β4 EVi +  
β5 number_stopsi + β6 ridetimei + β7 pricei (1)

We used an algorithm that sought to minimize the 
variance‒covariance estimator of the vector of the 

coefficients from Equation 1. Doing so resulted in a 
design that maximized the information gained from the 
choice experiment. Specifically, the algorithm varied 
the alternatives within choice sets and the choice 
sets within an experimental design to minimize the 
D-error—the determinant of the asymptotic variance–
covariance matrix. To further improve the efficiency 
of the experimental design, we specified Bayesian 
priors to indicate that β5, β6, and β7 would likely be 
negative. Informing the experimental design of the 
anticipated coefficient sign can substantially improve 
design efficiency (Scarpa and Rose 2008). Our choice 
experiment included 20 choice sets each for both short 
and long trips. Three of each were randomly selected for 
presentation to the respondent.

Source: KAPSARC.
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4. Empirical Model
We model the probability of choosing a ride as a function of its attributes. The 
probability of a respondent choosing ride i (πi) is the same as the probability 
that the utility from choosing ride i is greater than the utility of choosing any 
other ride:

        (     )          (2)

where

ui = vi + εi (3)

If we assume that the error terms εi are independently 
distributed Type I extreme value errors, we can model the 
probability of choosing ride i as a mixed logit:

    
    (  )

∑    (  ) 
   

  (4)

Unlike a conditional logit, a mixed logit allows for 
heterogeneous preferences. The mixed logit relaxes the 
property of independence of irrelevant alternatives of 
the conditional logit and allows coefficients to be random 
parameters with normal distributions rather than fixed 
parameters (Train 1998). In the mixed logit the probability 
of choosing ride i is as follows:

    ∫     (    )
∑    (    ) 
   

 (   )      (5)

where xi’β is the vector of attributes of ride i from 
Equation 1 multiplied by a vector of coefficients and f(β|θ) 
is the density of β. When modeled as random parameters, 
we assume that the coefficients of the price, ride time,  
and number of stops are log-normally distributed—a 
common assumption for price and other parameters that 
are expected to be strictly positive or negative. This 
approach also avoids the issue of an undefined standard 
error for WTP estimates (Carson and Czajkowski 2019). 

Once the coefficients from Equation 1 are estimated, we 
calculate the WTP for a 1-unit change in an attribute x as 
βx/–β7 when β7 is specified to have a normal distribution, 
βx/exp(β7) when β7 is specified to have a log normal 
distribution, and exp(βx)/exp(β7) when both βx and β7 are 
specified to have a log-normal distribution.11

While the mixed logit characterizes the distribution of 
preferences, it does not identify what types of consumers 
constitute different portions of the distribution. Therefore, 
we also estimate a latent class logit. The latent class 
logit is less flexible than the mixed logit, allowing for only 
discrete or fixed preferences. However, this approach 
allows us to segment the sample and then estimate 
preferences separately by segment, facilitating a better 
identification of which types of consumers have which 
preferences. Assuming that there are S segments in the 
population, the probability of respondent n choosing 
ride i is conditional on the respondent’s membership in 
segment s, πni|s, where s = 1,…S, is as follows:

              
    

∑        
     

   
  (6)

We define the latent membership for segmentation 
as follows:

   
    

       ,  (7)

where M*
ns denotes the membership of respondent 

n in segment s, yn is a vector of socioeconomic 
characteristics, λs is a vector of parameters, and ζns is an 
independently distributed Type I extreme value error. 
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We can then model the probability (πns) of respondent n 
belonging to segment s as follows:

            
    

∑             
   

  (8)

Finally, the probability of respondent n selecting ride  
i (πni) is the sum of the segments of the probability of 

the respondent choosing ride i conditional on segment 
membership multiplied by the respondent’s probability of 
segment membership:

     ∑        
 

   
  (9)
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5. Results and 
Discussion
5.1. Summary Statistics
Table 2 presents the summary statistics of the respondent sociodemographics 
and compares them to census data. The survey sample is reasonably 
representative in terms of age and race/ethnicity, although it proved fairly 
difficult to recruit older participants and those of Hispanic, Latino, or Spanish 
origin. Very low- and high-income households are slightly undersampled, 
with 35.1% of the sample having an annual household income under $50,000, 
compared to 38.4% of the national population. The survey sample also 
overrepresents urban households and underrepresents rural households. 
Table 3 presents the summary statistics of various questions related to 
household transport and ride-hailing experience.
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Frequency Percent Census Data
Age
18-24 105 14.0% 11.9%
25-34 120 16.0% 17.9%
35-44 176 23.5% 16.4%
45-54 64 8.5% 16.0%
55-64 120 16.0% 16.6%
65-74 125 16.7% 12.4%
75-84 36 4.8% 6.3%
85 or older 4 0.5% 2.5%
Gender
Female 390 52.0% 50.8%
Male 358 47.7% 49.2%
Non-binary / third gender 2 0.3%
Race/Ethnicity
White 463 61.7% 57.8%
Black or African American 81 10.8% 12.1%
Asian 33 4.4% 5.9%
Hispanic, Latino, or Spanish 
origin 87 11.6% 18.7%
American Indian or Alaska 
Native 14 1.9% 0.7%
Middle Eastern or North 
African 3 0.4%
Native Hawaiian or other 
Pacific Islander 3 0.4% 0.2%
Another race or ethnicity not 
listed above 11 1.5% 0.5%
Multiple 55 7.3% 4.1%
Income
Less than $15,000 58 7.7% 9.8%
$15,000 to $24,999 69 9.2% 8.3%
$25,000 to $49,999 136 18.1% 20.3%
$50,000 to $99,999 263 35.1% 30.2%
$100,000 to $199,999 183 24.4% 22.9%
$200,000 or more 41 5.5% 8.5%
Location
Suburban 379 50.5% 52.0%
Urban 278 37.1% 27.0%
Rural 93 12.4% 21.0%
Age,  gender, income from 2019 ACS, race/ethnicity from 2020 
decennial Census, location from 2017 American Housing Survey

Table 2. Respondent sociodemographics and representativeness

Source: KAPSARC.
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Table 3. Respondent experience (summary statistics)

Source: KAPSARC.
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The survey took an average of seven minutes and 
a median of six minutes to complete. Importantly, 
the respondents mostly perceived the survey as 
consequential, with 82.1% of them answering that they 
believe that the trip choices made by themselves and 
other respondents in the survey would somewhat, 
probably, or definitely, be taken into consideration by 
transportation planners and policy makers.

5.2. Price Elasticity 
of Demand
The respondents took an average of 4.4 trips per month, 
with a median of 2 and a standard deviation of 6.6.12 The 
respondents were asked, “If ride-hailing services were 
cheaper, costing about half of what they currently do, 
how much more would you use them?” Based on this 
information, we could perform a back-of-the-envelope 
calculation of the price elasticity of demand for ride-
hailing trips using the following formula:

    
                                  

                                        
    ,  (10)

where trips_per_month is the respondent’s stated 
number of current trips per month and trips_per_month_2 
is the respondent’s anticipated number of trips after the 
50% price decrease.13 We found that demand for ride-
hailing trips is elastic, with a mean PED of 1.39 and a 
median of 1.33.

5.3. Mixed Logit 
Model
Table 4 displays the results of estimating the mixed logit 
model on the choice experiment data from the survey.14 

Table 5 shows associated WTP estimates calculated 
using the ratio of the coefficients described in Section 4.  
The coefficients of price, the number of stops, and the 
ride time are negative, as expected. The large and 
significant standard deviation of the number of stops 
coefficient indicates heterogeneity in this attribute, while 
the small and mostly insignificant standard deviation of 
the ride time coefficient suggests similar preferences 
across the respondents. The autonomous and driverless 
coefficients are all negative and significant, suggesting 
that disutility is associated with autonomous technology 
and is even more strongly associated with driverless 
vehicles. In some cases, the respondents appear to 
have a slight preference for HEVs but no significant 
preference for EVs. Table 5 shows that the respondents 
are willing to pay $1.33-$6.86 to avoid an additional 
stop to pick up another passenger.15 They are willing 
to pay $0.55-$1.06 for a one-minute reduction in ride 
time. The respondents are willing to pay $1.90-$3.58 to 
avoid riding in an AV and $8.43-$12.49 to avoid riding in 
a driverless vehicle. They are willing to pay $1.29-$2.22 
to ride in an HEV as opposed to an ICE vehicle. Take 
together, these results show that while the respondents 
are averse to longer ride times and more carpooling 
stops, they are an order of magnitude more averse to 
riding in a driverless car. Furthermore, the WTP for an 
environmentally cleaner vehicle, such as an HEV or an 
EV, is minimal.
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(1) (2) (3) (4) (5) (6)
Mean

Price ($) -2.961*** -2.927*** -2.738*** -2.648*** -2.336*** -2.400***
(0.333) (0.353) (0.328) (0.271) (0.214) (0.266)

Number of Stops -0.355*** -2.076*** -2.168*** -2.181*** -2.051*** -1.987***
(0.036) (0.338) (0.347) (0.394) (0.394) (0.431)

Ride Time (minutes) -0.0549*** -0.0451*** -0.0502*** -2.993*** -2.925*** -2.845***
(0.010) (0.011) (0.011) (0.215) (0.389) (0.216)

Autonomous -0.152*** -0.192*** -0.200*** -0.198*** -0.184** -0.184***
(0.053) (0.057) (0.060) (0.059) (0.072) (0.064)

Driverless -0.646*** -0.659*** -0.673*** -0.673*** -0.815*** -0.844***
(0.058) (0.061) (0.062) (0.062) (0.077) (0.081)

HEV 0.115** 0.096 0.098 0.101 0.112 0.117*
(0.057) (0.062) (0.063) (0.062) (0.081) (0.069)

EV 0.019 0.020 0.022 0.024 0.023 0.028
(0.058) (0.064) (0.065) (0.065) (0.084) (0.072)

Standard Deviation

Price ($) 1.292*** 1.034*** 0.857*** 0.751*** 0.477*** -0.662***
(0.263) (0.230) (0.257) (0.229) (0.160) (0.226)

Number of Stops 2.292*** 2.477*** 2.427*** 2.070*** 2.307***
(0.362) (0.357) (0.382) (0.327) (0.456)

Ride Time (minutes) 0.308 0.846 -0.546**
(0.446) (0.794) (0.259)

Autonomous 0.436*** 0.434*** -0.177 -0.190
(0.126) (0.118) (0.229) (0.219)

Driverless 1.162*** 1.175***
(0.098) (0.095)

HEV 0.329**
(0.162)

Observations 8,564 8,564 8,564 8,564 8,564 8,564
AIC 5,349 5,245 5,249 5,250 5,152 5,152
BIC 5,406 5,309 5,320 5,327 5,236 5,244
Robust standard errors in parentheses are clustered at the respondent level. When included 
as random variables, price, ride time, and number of stops are specified to have log-normally 
distributed coefficients. *** p<0.01, ** p<0.05, * p<0.1.

Table 4. Baseline results

Source: KAPSARC.
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We include interactions between the ride time coefficient 
and the number of stops, driverless, and autonomous 
coefficients. The results are presented in Table 6. The 
interaction between the number of stops and ride time in 
column 3 is significant. Calculating the ratio of the number 
of stops and price coefficients (as explained in Section 4)  
results in a WTP of −$2.33 per stop. The interaction 
coefficient of the number of stops * ride time implies an 
additional WTP of $0.02 per minute per stop. This result 
suggests that as the ride time increases, the absolute 
value of the negative WTP per stop decreases by $0.02 
per minute, meaning that additional stops are considered 
less bothersome when the ride is longer. However, as the 
ride time decreases, the negative WTP per stop becomes 
$0.02 less (or greater in absolute value) per minute, 
meaning that additional stops are considered more 
bothersome when the ride is shorter.

 

Number of Stops -$6.86 -$2.34 -$1.77 -$1.60 -$1.33 -$1.51
Ride Time (minutes) -$1.06 -$0.84 -$0.78 -$0.71 -$0.55 -$0.64
Autonomous -$2.94 -$3.58 -$3.09 -$2.80 -$1.90 -$2.03
Driverless -$12.48 -$12.30 -$10.40 -$9.51 -$8.43 -$9.30
HEV $2.22 $1.29
WTP estimates are based on results from Table 3 and are only calculated for parameters with 
statistically significant coefficients.

Table 5. Willingness to pay (per ride)

The interactions between the driverless and ride 
time coefficients in columns 5 and 8 are negative 
and statistically significant, showing that as ride time 
increases, the WTP for driverless (approximately −$7) 
becomes even lower (reduced by $0.05-0.06 per 
minute). This finding implies that riders are more averse to 
driverless cars the longer the ride is. However, as the ride 
time decreases, the WTP for a driverless car becomes 
less negative, meaning that riders are less averse to 
driverless cars on shorter trips. Indeed, when we split 
the sample by the long- and short-ride scenarios and 
estimate the same specification as column 5 of Table 4 
separately for each subsample, our results imply a WTP 
for a driverless ride of −$3.53 for short rides and −$23.32 
for long rides.

Source: KAPSARC.
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(1) (2) (3) (4) (5) (6) (7) (8)
Mean

Price ($) -3.227*** -2.533*** -2.476*** -2.930*** -2.341*** -2.953*** -2.325*** -2.294***
(0.499) (0.313) (0.227) (0.318) (0.229) (0.336) (0.200) (0.206)

Number of Stops -0.393*** -1.648*** -1.628*** -0.350*** -2.108*** -0.356*** -2.026*** -2.048***
(0.047) (0.453) (0.293) (0.036) (0.380) (0.036) (0.402) (0.396)

Ride Time (minutes) -0.0563*** -2.816*** -2.772*** -0.0562*** -2.953*** -0.0553*** -2.891*** -2.840***
(0.010) (0.212) (0.190) (0.010) (0.343) (0.010) (0.329) (0.328)

Autonomous -0.167*** -0.202*** -0.201*** -0.151*** -0.186*** -0.168** -0.210** -0.282***
(0.054) (0.066) (0.064) (0.053) (0.068) (0.081) (0.097) (0.101)

Driverless -0.632*** -0.828*** -0.804*** -0.577*** -0.690*** -0.646*** -0.815*** -0.654***
(0.059) (0.082) (0.079) (0.077) (0.103) (0.058) (0.077) (0.104)

HEV 0.102* 0.102 0.102 0.117** 0.103 0.116** 0.117 0.119
(0.059) (0.071) (0.069) (0.057) (0.074) (0.058) (0.078) (0.079)

EV 0.006 0.012 0.011 0.020 0.016 0.020 0.028 0.034
(0.059) (0.075) (0.071) (0.058) (0.078) (0.058) (0.081) (0.082)

Number of Stops * Ride Time 0.002 0.003 -6.376***
(0.002) (0.002) (0.649)

Driverless * Ride Time -0.003 -0.00455* -0.00581**
(0.002) (0.003) (0.003)

Autonomous * Ride Time 0.001 0.001 0.004
(0.002) (0.003) (0.003)

Standard Deviation

Price ($) 1.471*** -0.707*** -0.472*** 1.271*** 0.480*** 1.284*** 0.476** 0.456***
(0.373) (0.238) (0.136) (0.249) (0.112) (0.267) (0.195) (0.142)

Number of Stops 1.998*** 1.982*** 2.081*** 2.068*** 2.075***
(0.512) (0.261) (0.329) (0.301) (0.307)

Ride Time (minutes) -0.574** 0.400** 0.938** 0.788 0.788
(0.236) (0.194) (0.447) (0.677) (0.607)

Autonomous -0.216 0.160 -0.180 -0.173 -0.173
(0.194) (0.258) (0.237) (0.233) (0.238)

Driverless 1.177*** 1.146*** 1.169*** 1.160*** 1.166***
(0.096) (0.094) (0.097) (0.098) (0.098)

HEV 0.336** 0.289
(0.158) (0.198)

Number of Stops * Ride Time 1.278***
(0.265)

Observations 8,564 8,564 8,564 8,564 8,564 8,564 8,564 8,564
AIC 5,349 5,153 5,146 5,350 5,150 5,351 5,153 5,151
BIC 5,413 5,252 5,252 5,413 5,242 5,415 5,245 5,249
Robust standard errors in parentheses are clustered at the respondent level. When included as random variables, price, ride time, 
number of stops, and number of stops interacted with ride time are specified to have log-normally distributed coefficients. *** p<0.01, 
** p<0.05, * p<0.1.

Table 6. Heterogeneity in ride-hailing preferences

Source: KAPSARC.
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Table 7 shows responses to some of the post-choice-
experiment debriefing questions, which are intended 
to help us understand the respondents’ choices. The 
most prevalent concern about AVs is safety, followed by 
the specific concern about not having a driver to handle 
emergency situations (in driverless vehicles). More 
respondents would enjoy having a driver to chat with 
than not (22.1% vs. 14.7%). Despite the general aversion to 
driverless vehicles, a quarter of the respondents would 
like to ride in such a vehicle out of curiosity, and just over 
10% would like to ride in a driverless vehicle because it is 
more fuel efficient and has better performance.

A larger share of respondents wish to ride in an EV either 
out of curiosity (47.5%) or because EVs are good for 
the environment (38.9%). Less than 15% do not trust EV 
technology. Nevertheless, this openness to EVs does 
not translate into a significant WTP for EVs in the choice 
experiment. The most prevalent opposition to carpooling 
is not wanting to ride with a stranger (40.9%), followed by 
safety concerns (36.8%) and concerns about longer ride 
times (28.9%).

 

Frequency Percent
Regarding ride-hailing in driverless vehicles, with which of the following do you agree? 
I have safety concerns about self-driving vehicles. 459 61.2%
I would be concerned if there is no driver to handle emergency situations. 396 52.8%
I do not trust self-driving technology. 263 35.1%
I enjoy having a driver to chat with. 166 22.1%
I’d prefer not to have to chat with a driver. 110 14.7%
I would like to ride in one because I’m curious about them. 190 25.3%
I would like to ride in one because they operate more fuel efficiently. 88 11.7%
I would like to ride in one because they have better performance (e.g., smoother ride). 83 11.1%

Regarding ride-hailing in electric vehicles, with which of the following do you agree? 
I do not trust EV technology. 108 14.4%
I am worried an EV would run out of electricity, leaving me stranded. 227 30.3%
I would like to ride in an EV because I am curious about them. 356 47.5%
I would like to ride in an EV because they are eco-friendly. 292 38.9%

Regarding carpooling (pick up an additional rider) while ride-hailing, with which of the 
following do you agree? 
Carpooling makes trips take too much time. 217 28.9%
I do not want to ride with a stranger. 307 40.9%
Carpooling with strangers could be dangerous. 276 36.8%
I generally don’t mind riding with a stranger, but you never know who the passenger 
will be, and he/she might bother me in some way. 238 31.7%
I would enjoy meeting new people this way. 116 15.5%
I’d often be willing to carpool if it makes my ride substantially cheaper. 134 17.9%

Table 7. Ride-hailing attitudes (summary statistics)

Source: KAPSARC.
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To further explore the WTP for ride attributes, we can 
estimate the elements in the coefficient covariance 
matrix from column 3 of Table 5 (i.e., allowing for 
correlation across parameters). We can then calculate 
respondent-level preference parameters following 
Revelt and Train (2000). Finally, we plot kernel density 
estimates of the distribution of respondent-level 
preferences. The results are shown in Figure 2, with 
vertical red lines representing the median WTP. Figure 
2a displays the distribution of the coefficient of the 
number of stops. The median WTP per additional stop 
is −$3.66. There is a large mass of respondents with a 
relatively low WTP for an additional stop but a very long 
left tail with a mean of −$23.45, suggesting that a small 
number of respondents are highly averse to carpooling. 

Figure 2b displays the distribution of the driverless 
coefficient. The median WTP is −$10.59; all respondents 
have a negative coefficient, and the distribution is fairly 
symmetric. In other words, with all else being equal, 
all respondents prefer not to ride in a driverless car, 
with the WTP to avoid a driverless ride being roughly 
normally distributed around a mean of $10.15 and 
a standard deviation of $4.29. Figure 2c shows the 
distribution of the autonomous coefficient. The median 
WTP to avoid a ride with autonomous or self-driving 
technology is $1.92. However, approximately 30% of the 
respondents actually have a positive WTP to ride in such 
a vehicle. This finding suggests that with the condition of 
having a driver in the car, many riders are not opposed 
to self-driving technology.
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5.4. Latent Class Logit Model
We first estimate latent class logits, assuming that 2, 3, and 4 different classes 
exist. Table 8 shows the Akaike information criterion (AIC), consistent AIC 
(CAIC), and Bayesian information criterion (BIC) for each model. While the 
AIC is smallest for a 4-class model, both the CAIC and BIC are minimized 
in the 3-class model. Therefore, we can proceed with the analysis of the 
3-class model.

Table 8. Latent class logit model fit.

Classes LL N parameters AIC CAIC BIC

2 −2,602 15 5,234 5,319 5,304

3 −2,529 23 5,104 5,233 5,210

4 −2,514 31 5,091 5,265 5,234

Table 9 presents the results of the 3-class latent class 
logit model and the results of the jointly estimated 
class membership model. Class 1 is willing to pay $3.72 
to avoid an additional carpooling stop and $0.83 for 
each reduced minute of ride time. Those in class 1 are 
willing to pay an additional $1.43 to ride in an HEV, 
although this result is statistically significant at only 
the 10% level. Notably, they do not have a significant 
negative preference for autonomous or driverless cars. 
Lower-income households are somewhat more likely to 
belong to this class, although the membership variable 
is only marginally significant. Perhaps the increased 
price sensitivity of this class makes those who belong 
to it less opposed to self-driving technology if and 
when they receive a discount for such rides. In contrast, 
respondents who identify as politically conservative 
(versus liberal or neither) are less likely to belong to 
this class. More liberal respondents are perhaps more 
in favor of environmentally friendly technologies, which 
may drive the WTP for HEVs.

The respondents in class 2 are less price sensitive than 
are those in class 1. They are willing to pay $0.47 for each 

reduced minute of ride time. While they do not have a 
significant preference for AV technology, they are willing 
to pay $2.77 to avoid a driverless ride. They are also 
willing to pay more ($2.65) to ride in an HEV. Much like 
class 1, lower-income and nonconservative respondents 
are more likely to belong to this class. Furthermore, 
respondents who live in an urban area are considerably 
more likely to belong to class 2. This finding may drive 
the difference in driverless preferences between classes 
1 and 2. For example, respondents in urban areas may 
be more concerned about the safety of driverless 
cars, given their denser built environment and greater 
traffic congestion.

The respondents in class 3 are less likely to be low 
income, less likely to live in urban areas, and more likely 
to identify as politically conservative. They have strong 
negative preferences for autonomous and driverless 
rides and for rides in HEVs and EVs. However, given the 
imprecisely estimated price coefficient, we are unable to 
calculate the WTP for these attributes. It is likely that this 
population constitutes the left tails of the autonomous and 
driverless coefficient distributions in Figures 2b and 2c.

Source: KAPSARC.
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Table 9. Latent class logit and class membership.

Variables Class 1 Class 2 Class 3 Share 1 Share 2 Share 3

Price ($) −0.329 
(0.079)***

−0.0856 
(0.020)***

−0.064 
(0.075)

Number of 
stops

−1.223 
(0.247)***

−0.053 
(0.060)

−0.717 
(0.186)***

Ride time 
(minutes)

−0.274 
(0.071)***

−0.0406 
(0.014)***

−0.012 
(0.048)

Autonomous −0.130 
(0.254)

−0.066 
(0.080)

−0.885 
(0.234)***

Driverless −0.217 
(0.202)

−0.237 
(0.086)***

−3.616 
(0.631)***

HEV 0.470 
(0.275)*

0.227 
(0.085)***

−0.955 
(0.336)***

BEV 0.181 (0.264) 0.081 
(0.083)

−0.578 
(0.255)**

Income:  
< $50k

0.620 
(0.374)*

0.893 
(0.347)**

0.000

Urban 0.415 
(0.303)

0.748 
(0.281)***

0.000

Conservative −0.568 
(0.286)**

−0.445 
(0.264)*

0.000

Constant 0.130 (0.242) 0.504 
(0.234)**

0.000

Observations 8,564 8,564 8,564 8,564 8,564 8,564

Number of 
groups

4,282 4,282 4,282 4,282 4,282 4,282

Membership 
share (%)

27.3 50.3 22.4

Notes:

* p < 0.1.

** p < 0.05.

*** p < 0.01.

Robust standard errors in parentheses are clustered at the respondent level.

Source: KAPSARC.
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5.5. Simulations
We performed several simulations to further investigate the tradeoffs that riders 
make between ride characteristics. These simulations utilized the coefficients 
estimated in column 6 of Table 4 to estimate the probabilities of riders choosing 
two alternative rides. In the first simulation, riders choose between a 10-minute 
trip with no carpooling in a non-HEV and a non-EV that is 1) autonomous and 
driverless and 2) nonautonomous and with a driver. When both rides cost $20, 
30.8% of the riders choose the driverless ride. We then hold the cost of ride 2 
constant at $20 and decrease the cost of the driverless ride by $1 increments, 
showing how this discount increases the probability of respondents choosing 
the driverless ride. The results are shown in Figure 3a. With all else being 
equal, the average rider prefers to ride with a driver and requires a discount 
to ride in a driverless car. Even when the driverless ride costs a fraction of 
the original $20 price, only approximately two-thirds of riders will choose it. 
Figure 3b displays similar results but for a longer journey of 50 minutes with a 
baseline cost of $95. With a reduction in price from $95 to $65, the probability 
of choosing the driverless ride sharply increases from approximately 30% to 
almost 80%, but it then starts to plateau with further discounting.
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The second simulation compares the probability of 
choosing four different rides with carpooling versus 
the same ride without carpooling. All rides are in 
nonautonomous, non-HEV, non-EV cars with a driver. 
The ride without carpooling is 10 minutes and costs $20. 
The carpool rides are 1) 10 minutes with one stop, 2) 15 
minutes with one stop, 3) 10 minutes with two stops, and 
4) 15 minutes with two stops. As the cost of these rides 
decreases from $20, we predict the probability of choosing 
each ride versus the noncarpool ride. The results are 
shown in Figure 4. The blue line shows that, all else being 
(including the ride time) equal, the carpool ride requires a 

discount of $5 (cost of $15 versus $20) to make the average 
rider indifferent between the one-stop carpool and the 
noncarpool ride. The gray line indicates that a discount 
of $8 is needed to make the average rider indifferent 
between the two-stop carpool and the noncarpool rides. 
In other words, even if the ride with the carpool does not 
increase the ride time, consumers still require a discount to 
compensate them for the disutility of carpooling. Factoring 
in a longer ride time from carpooling lowers the probability 
of choosing these rides. Adding one more stop (blue line 
vs. gray line) reduces the utility by less than adding five 
minutes to the ride (blue line to orange line).
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In Figure 5a, Ride 2 is in an autonomous, driverless  
EV that makes one stop for carpooling and has a 
12-minute drive time. The probability of choosing Ride 2  
is compared to the probability of choosing Ride 1,  
which is in a nonautonomous ICE vehicle with a driver  
and no carpooling that takes 10 minutes and costs $20. 

Figure 5. Probability of choosing a shared, driverless, and electric ride
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In Figure 5b, Ride 2 is in an autonomous, driverless EV 
that makes one stop for carpooling and has a 60-minute 
drive time. The probability of choosing Ride 2 is 
compared to the probability of choosing Ride 1, which 
is in a nonautonomous ICE vehicle with a driver and no 
carpooling that takes 50 minutes and costs $95.

The third simulation investigates the probability of 
choosing a shared, driverless, and electric ride versus a 
conventional ride. Specifically, we compare the probability 
of choosing an autonomous, driverless ride in an EV with 
one carpooling stop, which takes 20% longer, to that of 
choosing a nonautonomous, nondriverless ride in an  
ICE vehicle with no carpooling. The results are shown  
in Figure 5. In Figure 5a, we assume a shorter and less 

expensive ride, and in Figure 5b, we assume a longer and 
more expensive ride. Figure 5a shows that for the shorter 
ride, the shared, driverless, and electric ride would need 
to cost only $3 for riders to be indifferent between it and 
the $20 conventional ride. Figure 5b shows that for the 
longer ride, the shared, driverless, and electric ride would 
need to cost approximately $73 for riders to be indifferent 
between it and the $95 conventional ride.
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6. Conclusion
Our results suggest that despite the theoretical potential for emission 
reductions from shared, autonomous, and electric ride-hailing, this future 
vision of transport faces substantial barriers from a consumer behavior 
perspective. First, most passengers do not want to share a ride with strangers, 
with some requiring significant discounts to do so. The primary barrier is 
simply that respondents do not want to ride with strangers, followed by safety 
concerns. Second, riders are even more averse to riding in a driverless car, 
citing safety as their main concern. However, the resistance appears to be to 
not having a driver rather than the self-driving technology itself. Third, while 
most riders are open to riding in HEVs or EVs, they are generally not willing to 
pay a higher price to ride in these lower-emission vehicles.

We find that riders are more opposed to additional 
stops on shorter trips. Given the greater potential for 
passenger pickup and destination matching in urban 
areas, this opposition will further limit the wider adoption 
of carpooling. Our latent class analysis shows that 
nonurban and more politically conservative respondents 
are more likely to have left-tail preferences for AVs and 
driverless vehicles.

Overall, the promise of lower costs for shared, 
autonomous rides does not appear to overcome riders’ 
opposition to carpooling and driverless cars. One 
simulation shows that even when a short driverless ride 
costs only a fraction of the (otherwise same) ride with a 
driver, only two-thirds of riders will choose it. Another 
simulation shows that the average rider is indifferent 
between choosing a $20 ride with no carpooling 
and choosing a $15 ($12) ride with one (or two) stop(s) 
when the ride time is held constant. To the extent that 
carpooling increases the ride time, which is most likely the 
case, greater discounts are then required.

Putting the pieces together in our final simulation, we 
find that the average rider requires an approximately 
$20 discount for a shared, autonomous, and electric ride 
versus a conventional ride. While such a discount may be 
more realistic for a longer ride with a higher price point, 
it seems unlikely that cost reductions from automation 
and carpooling would be sufficient to offer enough of a 
discount for shorter trips.

Our findings highlight two major barriers to the shared, 
autonomous, electric MOD future, the first of which is 
safety concerns. These concerns could potentially be 
alleviated by a robust regulatory framework, as well as 
proof of concept by the industry. The second barrier is an 
aversion to riding with strangers. This barrier could also 
be partially addressed with regulations offering consumer 
protections, as well as information campaigns designed to 
create and bolster social norms (e.g., encouraging sharing 
and the exhibition of polite behavior such as maintaining 
personal space).
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Endnotes
1  https://www.uber.com/newsroom/10000-cities/

2  https://blog.olacabs.com/know-where-ola-is-resuming-its-services/

3  https://techcrunch.com/2021/03/29/didi-chuxing-expands-to-south-africa-to-take-on-bolt-and-uber/

4  https://www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/

5 Qualtrics, a professional survey company, was contracted to administer the survey. It recruited respondents 
using its online panel and provided financial compensation as an incentive. Quotas were set to ensure the national 
representativeness of the sample.

6 Specifically, the consequentiality statement read as follows: “Your answers may be used to help state and local policy 
makers in their transportation planning.”

7 Of the 1,783 respondents who went to the starting page of the survey, 1,003 were screened out for not having ever 
used a ride-hailing service (922), not agreeing to the consent form on the first page (67), or being younger than 18 years 
of age (14). Thirty did not complete the survey, and the remaining 750 constitute our sample.

8 The attributes were based on prior studies (Lavieri and Bhat 2019; Sweet 2021) and were chosen to convey the 
options in a simple and easy-to-understand manner. The attributes were limited to five, including price, to limit the 
complexity and cognitive burden of the choice task.

9 Lloyd-Smith, Adamowicz, and Dupont (2019) find that asking a question about perceived consequentiality prior to 
a valuation question reduces the number of survey respondents who perceive the survey as inconsequential. Our 
consequentiality question read as follows: “To what extent do you believe the trip choices made by you and other 
survey respondents in the following questions will be taken into consideration by transportation planners and policy 
makers?” Over four-fifths of the respondents indicated that they believe that their choices would somewhat, probably, 
or definitely be taken into consideration by transportation planners and policy makers.

 10 Two options (plus the “status quo” of, in this case, the option to select neither ride) are the standard for most choice 
experiments in environmental economics (Oehlmann et al. 2017). More options increase complexity and cognitive 
burden, and there is evidence that two alternatives plus a status quo option are associated with a better choice model 
fit (Rolfe and Bennett 2009).

11 We are unable to estimate parameters in the WTP space because in the majority of specifications, the log-likelihood 
functions do not converge to a well-defined maximum value.

12 This was based on a fill-in-the-blank question with an “unsure” option. If “unsure” was selected, the respondent was 
asked to select one of a few options: every day, a few times a week, a few times a month, or a few times a year or less. 
For these four options, we assumed 25.8 (6 times a week times 4.3 weeks per month), 12.9 (3 times a week times 4.3 
weeks per month), 3, or 0.17 (2 times a year divided by 12 months) trips per month.

https://www.uber.com/newsroom/10000-cities/
https://blog.olacabs.com/know-where-ola-is-resuming-its-services/
https://techcrunch.com/2021/03/29/didi-chuxing-expands-to-south-africa-to-take-on-bolt-and-uber/
https://www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/
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13 For respondents who indicated they would ride “twice as much” as they currently do, trips_per_month_2 is double 
trips_per_month. For those who selected “a few more times a week,” “a few more times a month,” or “a few more times 
a year,” trips_per_month_2 is trips_per_month plus 12.9 (3 times a week times 4.3 weeks per month), plus 3, or plus 
0.17 (2 times a year divided by 12 months), respectively.

14 STATA 17 software was used for all model estimations. In Tables 4, 6, and 9, the first row is a header labeling the 
columns. In Tables 4 and 6, each column represents a different model specification and is estimated separately. In 
Table 9, all parameters in the table are jointly estimated. The tables present estimated coefficients with standard errors 
in parentheses below, with the significance of the estimated p values indicated with asterisks.

15 This estimate is close to that of Sweet (2021), who estimates that a discount of $1-$4 is required for a passenger to 
share a ride.
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Appendix

 

Frequency Percent
I usually try new products before other people do.
Strongly agree 163 21.7%
Somewhat agree 223 29.7%
Neither agree nor disagree 152 20.3%
Somewhat disagree 148 19.7%
Strongly disagree 64 8.5%

I like to be the first among my friends and family to try something new.
Strongly agree 163 21.7%
Somewhat agree 205 27.3%
Neither agree nor disagree 172 22.9%
Somewhat disagree 153 20.4%
Strongly disagree 57 7.6%

I like to tell others about new brands or technology.
Strongly agree 196 26.1%
Somewhat agree 248 33.1%
Neither agree nor disagree 157 20.9%
Somewhat disagree 90 12.0%
Strongly disagree 59 7.9%

Which of the following best describes your political ideology?
Conservative 219 29.2%
Liberal 198 26.4%
Moderate 333 44.4%

How important are environmental issues to you personally?
Extremely important 177 23.6%
Very important 205 27.3%
Moderately important 207 27.6%
Slightly important 124 16.5%
Not at all important 37 4.9%

How important is it for the USA to take steps now to reduce greenhouse gas emissions?
Extremely important 227 30.3%
Very important 210 28.0%
Moderately important 156 20.8%
Slightly important 114 15.2%
Not at all important 43 5.7%

Table A1. Other attitudinal variables (summary statistics)
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